
Hydronit

2011
AC & DC Hydraulic
Power Packs Micro

POWER PACKS MICRO series ordering code

AC & DC electric motors

Section A

DC motors

0,15 12DC_T	12VDC motor - 150W - Ø 80 + thermal switch
0,15 24DC_T	24VDC motor - 150W - Ø 80 + thermal switch
0,5 12DC	12VDC motor - 500W - Ø 80
0,5 24DC	24VDC motor - 500W - Ø 80
0,5 12DC_T	12VDC motor - 500W - Ø 80 + thermal switch
0,5 24DC_T	24VDC motor - 500W - Ø 80 + thermal switch
0,8 12DC	12VDC motor - 800W - Ø 80
0,8 24DC	24VDC motor - 800W - Ø 80
0,8 12DC_T	12VDC motor - 800W - Ø 80 + thermal switch
0,8 24DC_T	24VDC motor - 800W - Ø 80 + thermal switch
1,6 12DC_T	12VDC motor - 1600W - Ø 114 + thermal switch
2,1 12DC_T	12VDC motor - 2100W - Ø 114 + thermal switch
2,2 24DC_T	24VDC motor - 2200W - Ø 114 + thermal switch

AC motors: three-phase 4 poles (~1450 rpm at 50Hz)

N037AC341S3	integral motor 0,37kW 3-ph 4-pole 220/380V 50/60Hz frame 71
N055AC341S3	integral motor 0,55kW 3-ph 4-pole 220/380V 50/60Hz frame 71
N075AC341S3	integral motor 0,75kW 3-ph 4-pole 220/380V 50/60Hz frame 71

AC motors: single-phase 4 poles (~1450 rpm at 50Hz)

N037ACS41S3	integral motor 0,37kW 1-ph 4-pole 220V 50Hz frame 71
N055ACS41S3	integral motor 0.55kW 1-ph 4-pole 220V 50Hz frame 71

2 pole and special execution motors (High starting torque, high IP, with thermal protector,... available on request

No motor: B14 Flange + coupling kit

NB14 63	mounting kit for B14 motors frame 63
NB14 71	mounting kit for B14 motors frame 71

Electric motors options

DC motor options

S150 12DC 80	starting relay 12VDC 150A with mounting kit for Ø 80 motors
S150 24DC 80	starting relay 24VDC 150A with mounting kit for Ø 80 motors
S150 12DC 112	starting relay 12VDC 150A with mounting kit for Ø 112-114 motors
S150 24DC 112	starting relay 24VDC 150A with mounting kit for Ø 112-114 motors

Micro central manifold

Section B

International execution (1/4" BSP exit ports)

	MB Micro PPM B type body with 4 lateral cavities	
	MR	Micro PPM R type body for reversible circuits
	M4	Micro PPM 4-way type body for 4 way cartridge valves
USA e	xecution (SAE 06 e	exit ports)
	MBUS	Micro PPM B type body with 4 lateral cavities US execution

Micro PPM R type body for reversible circuits US execution

Micro PPM 4-way type body for 4 way cartridge valves US execution

Gear Pumps

Section C

Standard gear pumps

MRUS

M4US

GM0,1	gear pump group 0 – 0,19 cc/rev
KM0,2	gear pump group 0 – 0,26 cc/rev
KM0,4	gear pump group 0 – 0,38 cc/rev
KM0,6	gear pump group 0 – 0,64 cc/rev
КМ0,9	gear pump group 0 – 0,88 cc/rev
KM1,3	gear pump group 0 – 1,25 cc/rev
KM1,5	gear pump group 0 – 1,54 cc/rev
KM1,9	gear pump group 0 – 1,9 cc/rev
·	

Bi-directional gear pumps

RM0,1	reversible gear pump group 0 - 0,19 cc/rev
RM0,2	Reversible gear pump group 0 - 0,26 cc/rev
RM0,4	reversible gear pump - 0,38cc/rev
RM0,6	reversible gear pump - 0,63 cc/rev
RM0,9	reversible gear pump - 0,88cc/rev
RM1,3	reversible gear pump - 1,25cc/rev
RM1,5	reversible gear pump - 1,5cc/rev

Integral components: Cavity 0

Section D

Components in central manifold cavity 0

	ЈМ	check valve ball type 5/8-18 UNF
	ML	plug 5/8-18UNF basic

Integral components: Cavity 1

Components in central manifold cavity 1

components in central i	components in central maintoid cavity 1	
DM_60	relief valve M14 - 10÷60 bar - socket screw adjustment	
DM_180	relief valve M14 - 20÷180 bar - socket screw adjustment	
DM_280	relief valve M14 - 35÷280 bar - socket screw adjustment	
хм	plug for relief valve cavity M14	

Integral components: Cavity 2

Components in central manifold cavity 2

X	open cavity – no valve	
A	NC solenoid 2/2 way 3/4-16UNF poppet valve	
В	NC solenoid 2/2 way 3/4-16UNF poppet valve with emergency	
c	NO solenoid 2/2 way 3/4-16UNF poppet valve with emergency	
D	NC solenoid 2/2 way 3/4-16UNF double poppet valve with emergency	
E	lever operated 2/2 way valve without micro-switch	
EM	lever operated 2/2 way valve with micro-switch	
Z	2 way emergency button valve	
S	flow control valve 3/4-16UNF with screw	
T12DC	proportional flow control valve poppet type 15l/min 315 bar + coil 12VDC ED100%	
T24DC	proportional flow control valve poppet type 15l/min 315 bar + coil 24VDC ED100%	
U	hand pump 3/4-16UNF 2 cc/stroke + suction/return line pipe 1/4"BSP 370mm	
G	closed plug 3/4-16UNF	
Н	plug 3/4-16UNF with 1/4"BSPP exit port	
N	plug 3/4-16UNF open passage with 1/4"BSPP exit port	
P	plug 3/4-16UNF passing through 1/4"BSPP	
L	plug 3/4-16UNF basic	
J	check valve ball type 3/4-16UNF	
4VA11C	4/2 way solenoid directional valve, closed center transient (only for M4 manifolds)	
4VA2	4/3 way solenoid directional valve, center P to T (only for M4 manifolds)	
4VB2	4/3 way solenoid directional valve, closed center (only for M4 manifolds)	
4VC2	4/3 way solenoid directional valve, H center (only for M4 manifolds)	
4VE2	4/3 way solenoid directional valve, center A-B to T (only for M4 manifolds)	
JP	check valve poppet type 5/8-18 UNF (only for MR central manifolds)	
MG	Closed plug 5/8-18UNF (only for MR central manifolds)	

Cavity 2 option

V-CSB	handwheel for CSB/CSU	
EM9001C	pressure gauge shut-off valve 90° F-F + nipples M 1/4" BSPP - M 1/4" BSPP	
EMIL01C	pressure gauge shut-off valve F-F + nipples M 1/4" BSPP - M 1/4" BSPP	
F401**	pressure switch $1/4"$ BSPP where ** = max setting pressure (050-100-200-400 bar)	
MIR63**EM	pressure gauge Ø63 where ** = max press. (60-160-250-315 bar) + shut-off valve 90°	

Cavity 2 valve coil

12DC_M130	Coil 12V DC 18W ED75% for MSV30-31 + Electric connector DIN 43650-A
24DC_M130	Coil 24V DC 18W ED75% for MSV30-31 + Electric connector DIN 43650-A
24RAC_M130	Coil 24V DC 18W ED75% for MSV30-31 + El. connector with rectifier 12-24V
115_50AC_M130	Coil 115V/50Hz AC 28VA ED75% only for MSV30 + El. connector DIN 43650-A
230_50AC_M130	Coil 230V/50Hz AC 28VA ED75% only for MSV30 + El. connector DIN 43650-A
110RAC_M130	Coil 110V RAC 18W ED75% for MSV30-31 + El. connector with rectifier 115 V
220RAC_M130	Coil 220V RAC 18W ED75% for MSV30-31 + El. connector with rectifier 230 V

Cavity 2 valve coil

Coil 12V DC 22W ED100% for MSV-MDV + Electric connector DIN 43650-A
Coil 24V DC 22W ED100% for MSV-MDV + Electric connector DIN 43650-A
Coil 24V DC 22W ED100% for MSV-MDV + El. connector with rectifier 12-24 V
Coil 110V RAC 22W ED100% for MSV-MDV + El. connector with rectifier 115 V
Coil 220V RAC 22W ED100% for MSV-MDV + El. connector with rectifier 230 V
coil 12V DC ED100% for cartridge valves + Electric connector DIN 43650-A
coil 24V DC ED100% for cartridge valves + Electric connector DIN 43650-A
coil 24V AC ED100% for cartridge valves + integrated rectifier + Electric connector
coil 115V AC ED100% for cartridge valves + integrated rectifier + Electric connector
coil 230V AC ED100% for cartridge valves + integrated rectifier + Electric connector

Integral components: Cavity 3

Components in central manifold cavity 3

F02	fixed pressure compensated flow control valve 3/4-16UNF hole 0,8mm
F03	fixed pressure compensated flow control valve 3/4-16UNF hole 1mm
F04	fixed pressure compensated flow control valve 3/4-16UNF hole 1,25mm
F05	fixed pressure compensated flow control valve 3/4-16UNF hole 1,5mm
F06	fixed pressure compensated flow control valve 3/4-16UNF hole 1,75mm
F07	fixed pressure compensated flow control valve 3/4-16UNF hole 2mm
F09	fixed pressure compensated flow control valve 3/4-16UNF hole 2,5mm
F11	fixed pressure compensated flow control valve 3/4-16UNF hole 3mm
F13	fixed pressure compensated flow control valve 3/4-16UNF hole 3,5mm
F15	fixed pressure compensated flow control valve 3/4-16UNF hole 4mm
R2	compensated flow control valve 3/4-16UNF with screw $1\div2,2$ l/min
R3	compensated flow control valve 3/4-16UNF with screw $$ 1,6 \div 4 l/min
R4	compensated flow control valve 3/4-16UNF with screw $$ 2,5 \div 5 l/min
R5	compensated flow control valve 3/4-16UNF with screw $3 \div 7$ l/min
R6	compensated flow control valve 3/4-16UNF with screw 4,9 \div 10,8 l/min
R7	compensated flow control valve 3/4-16UNF with screw $8\div18,\!5$ l/min
S	flow control valve 3/4-16UNF with screw
Z	2 way emergency button valve
AR	NC solenoid 2/2 way 3/4-16UNF poppet valve, reversible flow
BR	NC solenoid 2/2 way 3/4-16UNF poppet valve with emergency, reversible flow
CR	NO solenoid 2/2 way 3/4-16UNF poppet valve with emergency, reversible flow
D	NC solenoid 2/2 way 3/4-16UNF double poppet valve with emergency
J	check valve ball type 3/4-16UNF
G	closed plug 3/4-16UNF
Н	plug 3/4-16UNF with 1/4"BSPP exit port
N	plug 3/4-16UNF open passage with 1/4"BSPP exit port
P	plug 3/4-16UNF passing through 1/4"BSPP
L	plug 3/4-16UNF basic
P**12DC	proportional relief valve 3/4-16UNF 12VDC where ** = max pressure (60-210 bar)
P**24DC	proportional relief valve 3/4-16UNF 24VDC where ** = max pressure (60-210 bar)
V**	relief valve 3/4-16UNF where ** = max pressure (40-110-250-350 bar) - socket screw
JP	check valve poppet type 5/8-18 UNF (only for MR central manifolds)

Closed plug 5/8-18UNF (only for MR central manifolds)

MG

Cavity 3 option

	V-CSB	handwheel for CSB/CSU
	2	handwheel M8 for VMDC35/VMDC20/VCF6 valves
	EM9001C	pressure gauge shut-off valve 90° F-F + nipples M 1/4" BSPP – M 1/4" BSPP
	EMIL01C	pressure gauge shut-off valve F-F + nipples M 1/4" BSPP - M 1/4" BSPP
	F401**	pressure switch 1/4" BSPP where ** = max setting pressure (050-100-200-400 bar)
	MIR63**EM	pressure gauge \emptyset 63 where ** = max press. (60-160-250-315 bar) + shut-off valve 90°

Cavity 3 valve coil voltage

12DC_M130	Coil 12V DC 18W ED75% for MSV30-31 + Electric connector DIN 43650-A
24DC_M130	Coil 24V DC 18W ED75% for MSV30-31 + Electric connector DIN 43650-A
24RAC_M130	Coil 24V DC 18W ED75% for MSV30-31 + El. connector with rectifier 12-24 V
115_50AC_M130	Coil 115V/50Hz AC 28VA ED75% only for MSV30 + Electric connector DIN 43650-A
230_50AC_M130	Coil 230V/50Hz AC 28VA ED75% only for MSV30 + Electric connector DIN 43650-A
110RAC_M130	Coil 110V RAC 18W ED75% for MSV30-31 + El. connector with rectifier 115 V
220RAC_M130	Coil 220V RAC 18W ED75% for MSV30-31 + El. connector with rectifier 230 V
12DC_M140	Coil 12V DC 22W ED100% for MSV-MDV + Electric connector DIN 43650-A
24DC_M140	Coil 24V DC 22W ED100% for MSV-MDV + Electric connector DIN 43650-A
24RAC_M140	Coil 24V DC 22W ED100% for MSV-MDV + El. connector with rectifier 12-24 V
110RAC_M140	Coil 110V RAC 22W ED100% for MSV-MDV + El. connector with rectifier 115 V
220RAC_M140	Coil 220V RAC 22W ED100% for MSV-MDV + El. connector with rectifier 230 V

Integral components: Cavity 4

Component in central manifold cavity 4 (only for MR central manifold)

DM_60	relief valve M14 - 10÷60 bar - socket screw adjustment
DM_180	relief valve M14 - 20÷180 bar - socket screw adjustment
DM_280	relief valve M14 - 35÷280 bar - socket screw adjustment
хм	plug for relief valve cavity M14

Flow restrictor in central manifold cavity 5

Flow restrictor in central manifold cavity 5

	•
PLUGTCE01	1/4" BSPP plug with copper washer
PP01370	suction/return line pipe 1/4"BSP 370mm
RETURN-KIT	1/4" BSP holder for SF12 + flexible plastic pipe 12 mm for return line / price per meter
C34200001	return line tank immersed filter
1(01)	fixed pressure compensated flow control valve 1/4"BSP 1l/min
2(01)	fixed pressure compensated flow control valve 1/4"BSP 2I/min
3(01)	fixed pressure compensated flow control valve 1/4"BSP 3I/min
4(01)	fixed pressure compensated flow control valve 1/4"BSP 4I/min
5(01)	fixed pressure compensated flow control valve 1/4"BSP 5I/min
6(01)	fixed pressure compensated flow control valve 1/4"BSP 6I/min
8(01)	fixed pressure compensated flow control valve 1/4"BSP 8I/min
10(01)	fixed pressure compensated flow control valve 1/4"BSP 10I/min
12(01)	fixed pressure compensated flow control valve 1/4"BSP 12I/min
15(01)	fixed pressure compensated flow control valve 1/4"BSP 15I/min

Flow restrictor in central manifold cavity 7

Flow restrictor in central manifold cavity 7

0(04)	closed plug for cavity 7
1(01)	fixed pressure compensated flow control valve 1/4"BSP 1l/min
2(01)	fixed pressure compensated flow control valve 1/4"BSP 2I/min
3(01)	fixed pressure compensated flow control valve 1/4"BSP 3I/min
4(01)	fixed pressure compensated flow control valve 1/4"BSP 4I/min
5(01)	fixed pressure compensated flow control valve 1/4"BSP 5I/min
6(01)	fixed pressure compensated flow control valve 1/4"BSP 6I/min
8(01)	fixed pressure compensated flow control valve 1/4"BSP 8I/min
10(01)	fixed pressure compensated flow control valve 1/4"BSP 10I/min
12(01)	fixed pressure compensated flow control valve 1/4"BSP 12I/min
15(01)	fixed pressure compensated flow control valve 1/4"BSP 15I/min
PIL5818	pilot for PO check valve 5/8-18UNF VUC10C
PIL5818DIF	pilot for PO check valve 5/8-18UNF VUC10C + valve for differential cylinders

Flow restrictor in central manifold cavity 8

Flow restrictor in central manifold cavity 8

PLUGTCE01	1/4" BSPP plug with copper washer
PP01370	suction/return line pipe 1/4"BSP 370mm
RETURN-KIT	1/4" BSP holder for SF12 + flexible plastic pipe 12 mm for return line / price per meter
C34200001	return line tank immersed filter
1(01)	fixed pressure compensated flow control valve 1/4"BSP 1l/min
2(01)	fixed pressure compensated flow control valve 1/4"BSP 2l/min
3(01)	fixed pressure compensated flow control valve 1/4"BSP 3l/min
4(01)	fixed pressure compensated flow control valve 1/4"BSP 4l/min
5(01)	fixed pressure compensated flow control valve 1/4"BSP 5l/min
6(01)	fixed pressure compensated flow control valve 1/4"BSP 6l/min
8(01)	fixed pressure compensated flow control valve 1/4"BSP 8l/min
10(01)	fixed pressure compensated flow control valve 1/4"BSP 10I/min
12(01)	fixed pressure compensated flow control valve 1/4"BSP 12I/min
15(01)	fixed pressure compensated flow control valve 1/4"BSP 15I/min

Tanks Section E

Steel tanks

0,7F	0,7l cylindrical steel horizontal mounting tank + 3/8"BSPP std filler & breather plug
0,7FV	0,7l cylindrical steel vertical mounting tank + 3/8"BSPP std filler & breather plug
1,2F	1,2l cylindrical steel horizontal mounting tank + 3/8"BSPP std filler & breather plug
1,2FV	1,2l cylindrical steel vertical mounting tank + 3/8"BSPP std filler & breather plug
1,7H	1,7l cylindrical steel horizontal mounting tank + 3/8"BSPP std filler & breather plug
1,7HV	1,7l cylindrical steel vertical mounting tank + 3/8"BSPP std filler & breather plug
2,4H	2,4l cylindrical steel horizontal mounting tank + 3/8"BSPP std filler & breather plug
2,4HV	2,4l cylindrical steel vertical mounting tank + 3/8"BSPP std filler & breather plug
F80000012	steel tank adapter for PPM - to be welded on custom made tanks

Plastic tanks

	0,4R	0,4l plastic horizontal mounting tank + 1/4"BSPP std filler & breather plug
	0,4RV	0,4l plastic vertical mounting tank + 1/4"BSPP std filler & breather plug
	0,7R	0,7l plastic horizontal mounting tank + 1/4"BSPP std filler & breather plug
	0,7RV	0,7l plastic vertical mounting tank + 1/4"BSPP std filler & breather plug
	1,2R	1,2l plastic horizontal mounting tank + 1/4"BSPP std filler & breather plug
	1.2RV	1.21 plastic vertical mounting tank + 1/4"BSPP std filler & breather plug

Accessories

Accessories

	E60543003	foot mounting support (45mm height)
	MIR63**	pressure gauge \emptyset 63 where ** = max press. (60-160-250-315 bar)
	EM9001C	pressure gauge shut-off valve 90° F-F + nipples M 1/4" BSPP – M 1/4" BSPP
	EMIL01C	pressure gauge shut-off valve F-F + nipples M 1/4" BSPP – M 1/4" BSPP
	F16000001	plastic Ø112-114 DC motor protection cover
	F401**	pressure switch 1/4" BSPP where ** = max setting pressure (050-100-200-400 bar)
	P0201	remote up/down control with 3m flying cable for single/double acting cylinder
	P0202	Remote 4 buttons control with 3m flying cable for 2 double acting cylinders
	VPC00	electronic PWM driver for proportional valves 12/24VDC
	BFCSAE0801	in-line manifolds for 3/4-16UNF valves 1/4" BSPP ports
	BFCSAE0802	in-line manifolds for 3/4-16UNF valves 3/8" BSPP ports

Section F

External manifolds

External manifolds

M60403004	23mm spacer subplate
M60403005	90° rotation manifold
M60403010(US)	NG3 MICRO parallel block - 1/4" BSPP lateral ports (opt. US execution with SAE ports)
M60413002	NG3 MICRO manifold with piloted check valve on A
M60413001	NG3 MICRO manifold with piloted check valve on A and B
M60413003	NG3 MICRO manifold with piloted check valve on B
M50403007	PPM to SD01 stackable valves converter manifold
РМ09М	hand pump 8,8 cc/stroke – cartridge only + base modular manifold

External valves Section G

External valves

SD00A11C	NG3 MICRO solenoid directional valve 4 way, 2 positions
SD00A2	NG3 MICRO solenoid directional valve 4 way, 3 pos. center P to T
SD00B2	NG3 MICRO solenoid directional valve 4 way, 3 pos. closed center
SD00C2	NG3 MICRO solenoid directional valve 4 way, 3 pos. H center
SD00E2	NG3 MICRO solenoid directional valve 4 way, 3 pos. center A-B to T
SD01A11C	Stackable solenoid directional valve 4 way, 2 positions
SD01A2	Stackable solenoid directional valve 4 way, 3 pos. center P to T
SD01B2	Stackable solenoid directional valve 4 way, 3 pos. closed center
SD01C2	Stackable solenoid directional valve 4 way, 3 pos. H center
SD01E2	Stackable solenoid directional valve 4 way, 3 pos. center A-B to T
SD01A11CC	Stackable solenoid directional valve 4 way, 2 positions, stack top closed
SD01A2C	Stackable solenoid directional valve 4 way, 3 pos. center P to T, stack top closed
SD01B2C	Stackable solenoid directional valve 4 way, 3 pos. closed center, stack top closed
SD01C2C	Stackable solenoid directional valve 4 way, 3 pos. H center, stack top closed
SD01E2C	Stackable solenoid directional valve 4 way, 3 pos. center A-B to T, stack top closed

External SD00 valves coils

12DC_M100	coil 12V DC 16W ED100% + Electric connector DIN 43650-A
24DC_M100	coil 24V DC 16W ED100% + Electric connector DIN 43650-A

External SD01 valves coils

12DC_M120	coil 12V DC 22W ED100% + Electric connector DIN 43650-A
24DC_M120	coil 24V DC 22W ED100% + Electric connector DIN 43650-A
24RAC_M120	coil 24V DC 22W ED100% + El. conn. with rectifier 12-24 V black pg11
220RAC_M120	coil 220V RAC 26W ED100% + El. conn. with rectifier 230 V black pg11

AC & DC ELECTRIC MOTORS

Integral AC motors: the engineered solution for compact and optimised power units from 0,25 to 1,8 kW, single or three phase. The AC motors are **directly flanged** on the central manifold for extra compactness. A **single coupling** can suit all powers. We suggest to adopt these advanced motors because of their peculiar advantages over standard B14 IEC AC motors and because they are **designed specifically** for use on our micro power packs, offering an **higher power density** and **high starting torque** (in HT models) than market standard motors. These motors are intendend for intermittent use (S3 40%), which is the case for most micro-power packs applications. They can be used in emergency situations continuously at a reduced rated power (about 30% less than S3 nominal power).

Single phase motors should not run in any case without load for long time to avoid overheating.

B14 IEC standard AC motors: the standard solution easily available on every market from 0,12 to 0,55 kW, single or three phase. These motors are normally procured by the customer itself. Hydronit provides adaptor flanges and double piece coupling for frame size: 63 and 71.

Frame 80 DC motors: with or without thermal protector and running time up to 6 min. Power from 0,15kW up to 0,8kW 12 or 24VDC. The permanent magnet construction allow their use in bidirectional units.

Frame 114 DC motors: power up to 2,2kW 24VDC for high performances. All motors have thermal protector switch as standard.

Are AC motors compliant with the European Union Minimum Energy Performance Standards?

Hydronit AC motors are manufactured in Italy with the best technologies nowadays available and are specifically designed for mini power packs duties, which are typically intermittent. Hydronit motors have an higher power density, lower weight, lower cost, comparing to standard IE2 motors on the market. Due to the specific field of applications, Hydronit motors are not included in the requirements of the above mentioned normative, since they are specially and solely manufactured for mini power packs intermittent duties. For continuous duty applications IE2 motors (IEC 60034-30) must be applied. Ask our sales office.

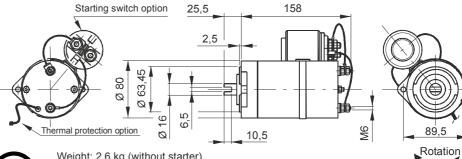
Are there special requirements to mount IEC B14 motors?

No special toolings are required. Please strictly follow motor side coupling mounting dimension tolerance as per the relevant drawings. Failing in doing so may cause malfunctioning of the power pack and even the break of the coupling and pump.

Can I start single phase AC motors under load?

Single phase motors have a reduced starting torque due to their intrinsecal design. Normally this ranges around 30-40% of the nominal torque at full power output. When designing circuits where a single phase motor must start under load, a proper dimensioning must be done and test on field must be preliminary performed. High starting torque «HT» motors are available. Ask our technical office.

How do I dimension a DC motor?


These motors are normally for intermittent duty. It is important to know required flow in I/min, working pressure in bar and the duty charge. Then following A040 table instructions a proper motor/pump combination can be selected.

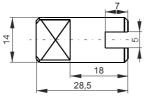
Ø7

INTEGRAL DC MOTORS Ø 80

Permanent magnets Protection degree: IP54 Insulation class: F

Weight: 2,6 kg (without starter)

Code


Description	PPC assembly code	Spare part code	Nominal duty cycle	Nominal speed	Nominal current
150W 12V DC + thermal protector	0,15 12DC/T	M46C1ST01	S2: 10 min S3: 15% ED	1400 rpm	30 A
150W 24V DC + thermal protector	0,15 24DC/T	M46C2ST01	S2: 10 min S3: 15% ED	1400 rpm	15 A
500W 12V DC motor	0,5 12DC	M46C1S005	S2: 6 min S3: 10% ED	2800 rpm	90 A
500W 24V DC motor	0,5 24DC	M46C2S005	S2: 6 min S3: 10% ED	2800 rpm	50 A
500W 12V DC + thermal protector	0,5 12DC/T	M46C1ST05	S2: 6 min S3: 10% ED	2800 rpm	90 A
500W 24V DC + thermal protector	0,5 24DC/T	M46C2ST05	S2: 6 min S3: 10% ED	2800 rpm	50 A
800W 12V DC motor	0,8 12DC	M46C1S008	S2: 3 min S3: 10% ED	4000 rpm	130 A
800W 24V DC motor	0,8 24DC	M46C2S008	S2: 4 min S3: 10% ED	4000 rpm	80 A
800W 12V DC + thermal protector	0,8 12DC/T	M46C1ST08	S2: 3 min S3: 10% ED	4000 rpm	130 A
800W 24V DC + thermal protector	0,8 24DC/T	M46C2ST08	S2: 4 min S3: 10% ED	4000 rpm	80 A

Options & coupling

Description	PPC assembly code	Spare part code	
12V DC 150 Amp start switch + mounting kit	S150 12DC 80	M47SC0001 + M47SK0801	
24V DC 150 Amp start switch + mounting kit	S150 24DC 80	M47SC0002 + M47SK0801	
Remote wired control with 2 buttons and 3m cable	P0201 (single acting)		
Remote wired control with 4 buttons and 3m cable	ple P0202 (double acting)		
Coupling for Ø 80 DC motors	E36200003		

Notes: the starting switch mounting kit is provided when specifying the /S150 as motor option in PPM assembly code. When ordering spare starting switches, it must be ordered separately (code: M47SK0801).

E36200003

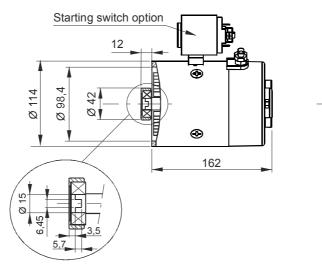
The coupling is already included when specifying the motor in PPM assembly code. It is to be indicated only when ordering PPC with no motor but with coupling.

90±0.2

Rotation

SECTION A

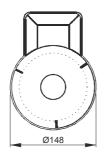
INTEGRAL DC MOTORS Ø 114



Compound wound Protection degree: IP54 Insulation class: F Weight: 7,05 kg (without starter)

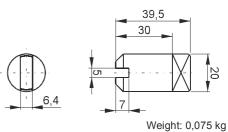
Code

Description	PPC assembly code	Spare part code	Nominal duty cycle	Nominal speed	Nominal current
1600W 12V DC + thermal protector	1,6 12DC/T	M46C1ST16	S2: 2 min S3: 12% ED	2600 rpm	230 A
2100W 12V DC + thermal protector	2,1 12DC/T	M46C1ST21	S2: 1,2 min S3: 7,5% ED	2300 rpm	330 A
2200W 24V DC + thermal protector	2,2 24DC/T	M46C2ST22	S2: 2 min S3: 12% ED	2600 rpm	140 A


Options & coupling

Description	PPC assembly code	Spare part code			
12V DC 150 Amp start switch + mounting kit	S150 12DC 112	M47SC0001 + M47SK1121			
24V DC 150 Amp start switch + mounting kit	S150 24DC 112	M47SC0002 + M47SK1121			
Remote wired control with 2 buttons and 3m cable	P02	P0201 (single acting)			
Remote wired control with 4 buttons and 3m cable	P020	02 (double acting)			
DC motor plastic cover	F16000001			er F16000001	
Coupling for Ø114 motors	E36200002				

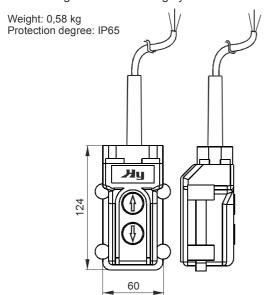
Notes: the starting switch mounting kit is provided when specifying the $\emph{IS}150$ as motor option in PPM assembly code. When ordering spare starting switches, it must be ordered separately (code: M47SK1121).


The coupling is already included when specifying the motor in PPM assembly code. It is to be indicated only when ordering PPM with no motor but with coupling.

Motor plastic cover F16000001 203 180

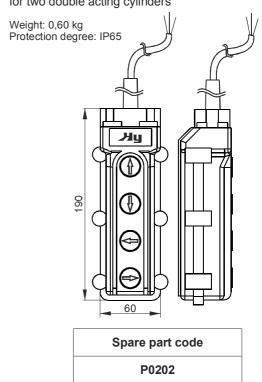
Weight: 0,27 kg

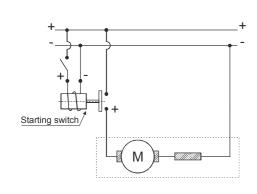
Coupling E36200002

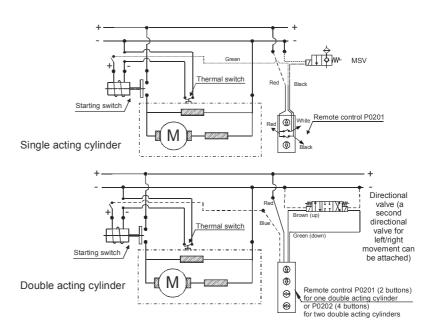


DC MOTORS OPTIONS

Remote control P0201


for one single or double acting cylinder




Remote control P0202

for two double acting cylinders

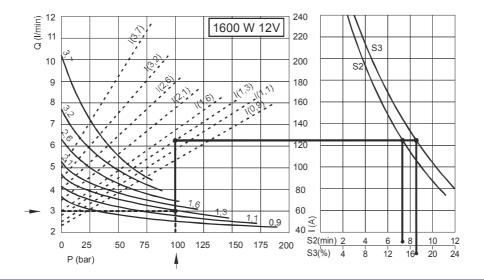
Electric connection schemes

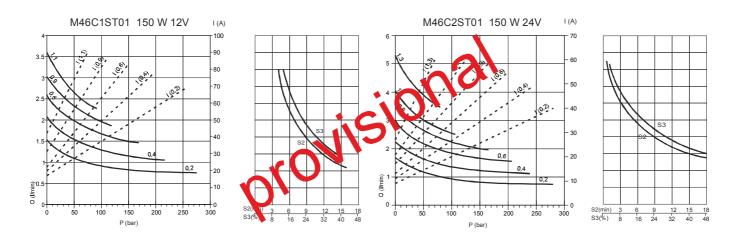
DC MOTORS CHOICE AND ELECTRIC CONNECTION SCHEMES

DC motors choice

Once required pressure and flow and available voltage (12 or 24V DC) are known, you can select the motor checking on each provided diagram if a pump displacement is available at the intersection of pressure and flow values. On the relevant "I" curve you obtain the absorbed current. When the intersection point is not exactly on a pump curve, choose the closer pump.

On the right hand diagram, from the current value, you can easily obtain the maximum allowed S2 (min) and S3 (%) values. S2 gives the allowable motor continuous running time in minutes, S3 gives the allowable running time in % of the total cycle.

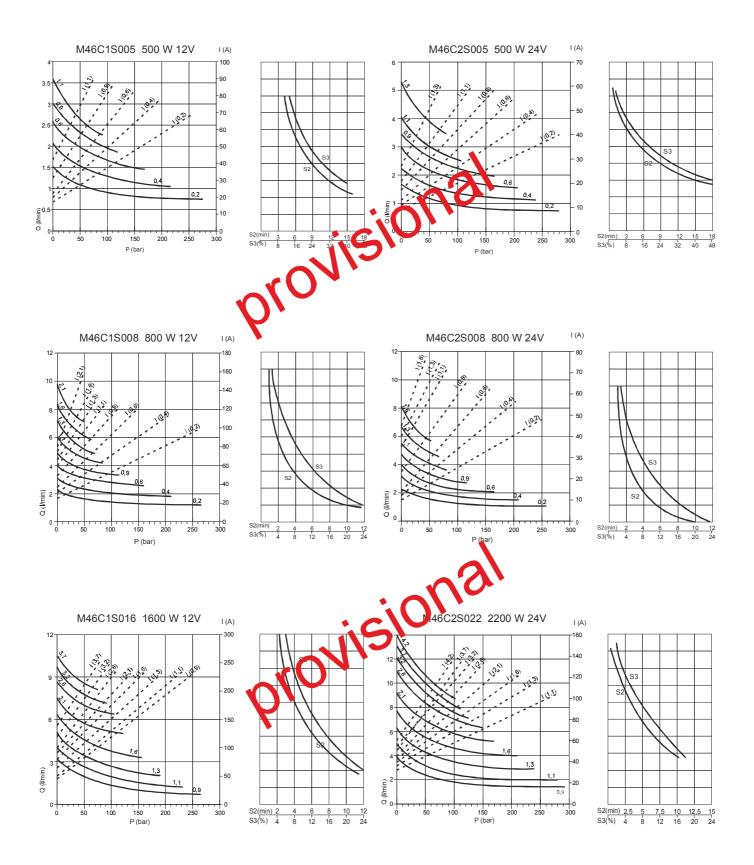

If obtained S2 and S3 values are not enough for required duty cycle, choose a bigger motor and repeat the calculation on the new motor curves.


Example:

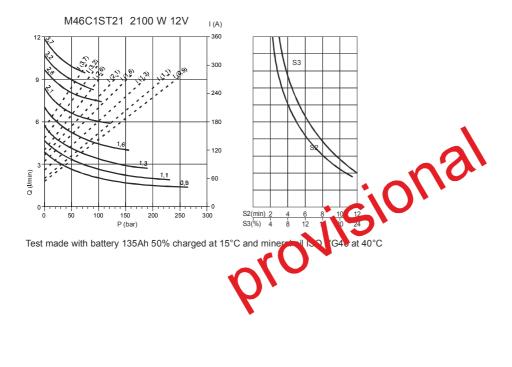
For our application we have following data:

flow = 3 l/min, max pressure = 100 bar, not clearly defined duty cycle.

- -We check on 1,6 Kw 12V DC motor diagram and see there is a pump available.
- -We choose from curves 1,3 pump: a 1,3 cm³/rev pump. On the corresponding "I" curve we read 125 A absorbed current. In these conditions on the S2 / S3 diagram we read that the DC motor can work for maximum 7 min (S2), that is 17% (S3) of the total cycle, i.e. after 7 min working, the motor should cool down for at least 34 min.
- -The total cycle time is calculated adding the working time and the idle time (17% working time plus 83% idle time), in this case 41 min. If this duty cycle is not adequate for our application, we must choose a higher power DC motor and check the relevant diagram again.



Tests made with rectified current supplied at nominal motor voltage (measured at the motor connection terminals) and oil ISO VG46 at 40°C

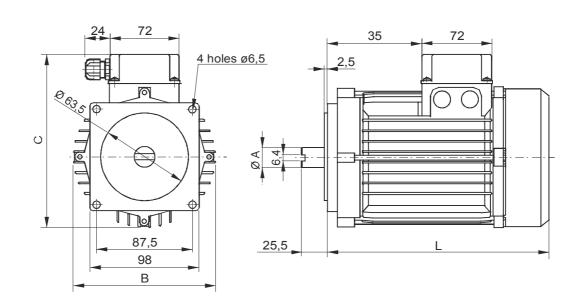


DC MOTORS DIAGRAMS

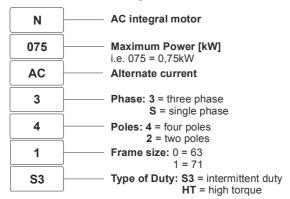
Tests made with rectified current supplied at nominal motor voltage (measured at the motor connection terminals) and oil ISO VG46 at 40°C

DC MOTORS DIAGRAMS

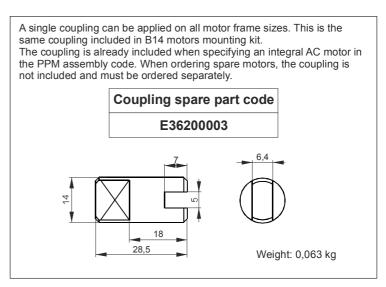
provisional


INTEGRAL AC MOTORS

Integral motors: single phase or three phase in frame 71, with square flange for direct connection to PPM central manifold and tang drive shaft. High starting torque single phase «HT» executions available.



Drawings show typical three phase motors. Single phase motors electric have different cable wiring box (including capacitors).



Protection degree: IP54 Insulation class: F

PPC motor assembly code

See a table of available codes on next table page

INTEGRAL AC MOTORS

Three-phase 4 poles (~1450 rpm at 50Hz)

Integral AC motor frame size	Maximum Power (S3 40%)	Spare motor code	ØA	В	С	L	Weight [kg]
	0,37kW (0,5HP)	N037AC341S3	15	138	180	210	5,5
71	0,55kW (0,75HP)	N055AC341S3	15	138	180	210	5,5
	0,75kW (1HP)	N075AC341S3	15	138	180	210	5,6

Three-phase 2 poles (~2900 rpm at 50Hz)

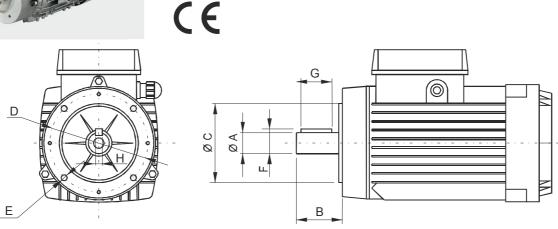
Integral AC motor frame size	Maximum Power (S3 40%)	Spare motor code	ØA	В	С	L	Weight [kg]
71	0,55kW (0,75HP)	N055AC321S3	15	138	180	210	5
/1	0,75kW (1HP)	N075AC321S3	15	138	180	210	5

Single-phase 4 poles (~1450 rpm at 50Hz)

Integral AC motor frame size	Maximum Power (S3 40%)	Spare motor code	ØA	В	С	L	Weight [kg]
71	0,37kW (0,5HP)	N037ACS41S3	15	138	180	210	6,5
71	0,55kW (0,75HP)	N055ACS41S3	15	138	180	210	7,2

Single-phase 2 poles (~2900 rpm at 50Hz)

Integral AC motor frame size	Maximum Power (S3 40%)	Spare motor code	ØA	В	С	L	Weight [kg]
71	0,55kW (0,75HP)	N055ACS21S3	15	138	180	210	6
/1	0,75kW (1HP)	N075ACS21S3	15	138	180	210	6,5


Other power / frame sizes and special motor types are available on request. Standard motors are for intermittent duty: **S3 40%** duty cycle means up to 6 switching on and off in an hour, i.e. the motors is ON for 4 min. and OFF for 6 min. They can be used in emergency situations continuously at a reduced rated power (30% less than S3 nominal power). **«HT» option**: available for motor spare codes marked with *.

B14 IEC AC MOTORS

B14 IEC motors: for market compatibility, any IEC standard B14 AC motor with frame 63 and 71 can be mounted. In this case two-pieces couplings and additional adaptor flanges as per next pages tables A090 and A100 must be mounted.

Motors overall dimensions are not indicated since they can vary substantially depending on the motor manufacturer

B14 IEC standard dimensions

Motor frame	Typical power range	ØA	В	øс	D	E	F	G	н	Mounting kit
63	0,12 ~ 0,25 kW 0,16 ~ 0,35 HP	11 j6	23	60	75	M5	12,5	18	4	NB1463
71	0,25 ~ 0,55 kW 0,37 ~ 0,75 HP	14 j6	30	70	85	M6	16	25	5	NB1471

PPC B14 motor assembly code

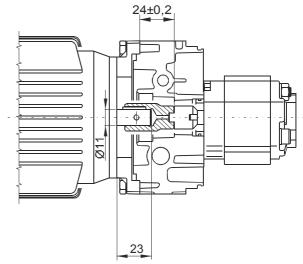
0,25	Power [kW]
AC	Alternate current
3	Phase: 3 = three phase S = single phase
4	Poles: 4 = four pole 2 = two pole
0	Frame size: 0 = 63 1 = 71
-	Duty factor: - = ED 100% (S1) S3 = intermittent duty

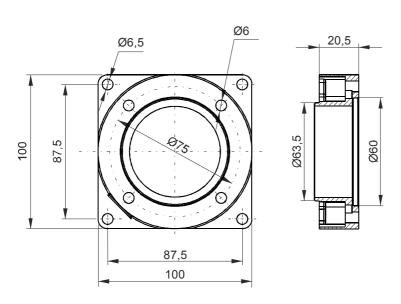
Mounting kits spare parts

The B14 mounting kits are made of:

- a semi-coupling E36200003 (the same used for frame 80 DC motors) on pump shaft side
- a semi-coupling on motor shaft side, which is different for any frame size
- an adaptor flange to suit the central manifold, which is also different for any frame size.

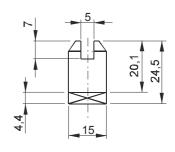
For detailed dimensions and codes see next pages tables.


The mounting kit is already included when specifying a B14 AC motor in PPM assembly code. When ordering spare motors, the relevant mounting kit is not included and must be ordered separately.

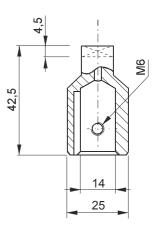

MOUNTING KIT FOR FRAME 63 B14 IEC MOTORS

Kit weight: 0,18 Kg

Adaptor flange



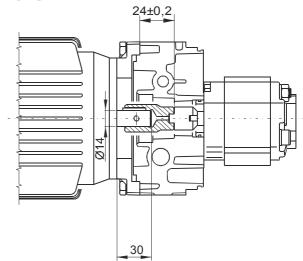
Description	PPC assembly code*	Spare part code
B14 63 motor side semi-coupling		M36100011
B14 pump side semi-coupling	NB1463	E36100000M
B14 63 adaptor flange		F25030002

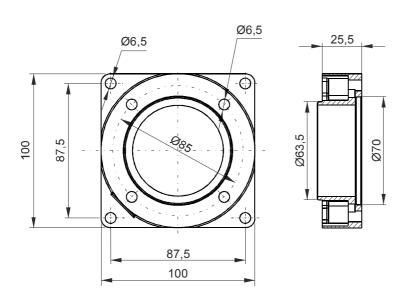

^{*} Note: the coupling+ flange kit is already included when specifying a B14 motor in PPM assembly code. NB1471 code to be indicated only when ordering PPM with no motor but with coupling + flange kit.

Coupling

Pump group side E36100000M

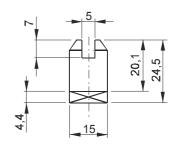
Motor side M36100011


Attention! When assembling B14 IEC motors with NB14 flange + couplings kit, please respect positioning tolerances as shown in top page drawing. Failing in doing so can cause malfunctioning or components failure.

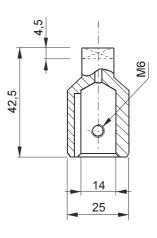

MOUNTING KIT FOR FRAME 71 B14 IEC MOTORS

Kit weight: 0,18 Kg

Adaptor flange



Description	PPC assembly code*	Spare part code
B14 71 motor side semi-coupling		E36100001
B14 pump side semi-coupling	NB1471	E36100000M
B14 71 adaptor flange		F25030003


^{*} Note: the coupling+ flange kit is already included when specifying a B14 motor in PPM assembly code. NB1471 code to be indicated only when ordering PPM with no motor but with coupling + flange kit.

Coupling

Pump group side E36100000M

Motor side **E36100001**

Attention! When assembling B14 IEC motors with NB14 flange + couplings kit, please respect positioning tolerances as shown in top page drawing. Failing in doing so can cause malfunctioning or components failure.

MICRO CENTRAL MANIFOLD

A single universal die-cast aluminium central manifold in 3 different executions is the core part to realize all power units in industrial, mobile and marine fields where extreme compactness and high power density is required. It features the highest integration and flexibility on the market, with up to seven devices which can be fitted inside, plus a wide selction of manifold blocks which can be connected externally to suit spool or cartridge type valves

The interface to hose fittings or external additional manifolds is unified. The P and T ports threads for the hose fittings direct connection are 1/4" BSPP (International standard) or 9/16-18UNF (SAE06) for the American standard execution.

Lateral cavities are according SAE08 standard (3/4-16UNF), except for the main check valve (5/8-18UNF) and main relief valve (M14)

The interfaces to tanks and motors are unified. All plastic or steel tanks have same interface and can be easily swapped.

All AC or DC motors can be fitted easily either directly to the central manifold or through adaptor flanges (B14 IEC standard motors)

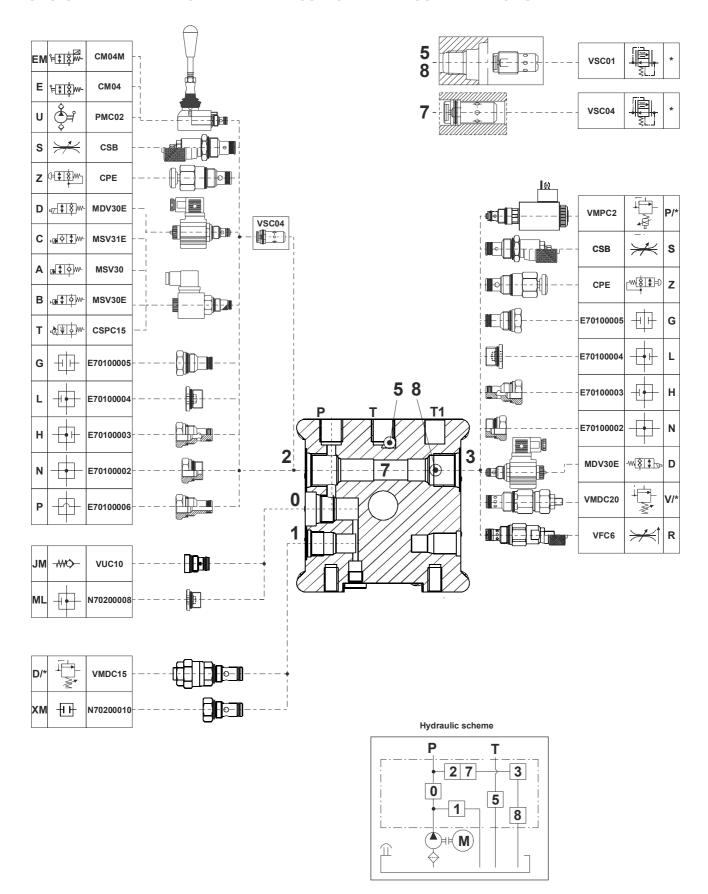
Clockwise (our standard) or counterclockwise or bidirectional rotation tang drive shaft standard gear pumps can be mounted.

The maximum flow is 6 l/min, with a low pressure drop, and maximum motor power is 2,2kW, well above the average of other alternative products on the market

Which micro central manifold execution should I choose?

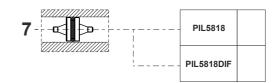
MB type is the most widely applied for single acting or double acting circuits. M4 execution is recommended for compact and cost effective double acting circuits with a single cylinder while MR is for bidirectional pump schemes and integrates double relief valve and double pilot operated check valves and also an extra pilote operated check valve for differential cylinders circuits proper functionality (this extra valve discharges return flow in excess from the piston side of the cylinder).

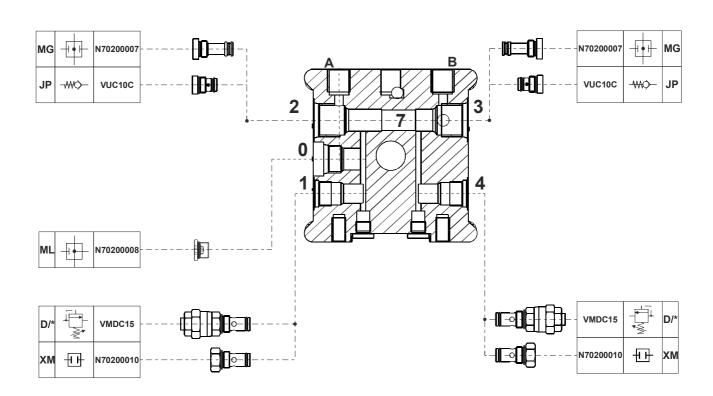
Do I need special tools to assemble the components within the central manifold?

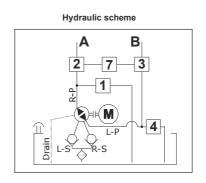

No. All valves are screw-in type in a single piece construction (no loose nuts, washers, springs,... difficult to assemble and falling apart). The components are easily assemblable with simple hand tools and hexagon keys.

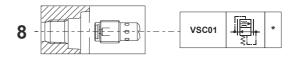
Is the central manifold available as loose component?

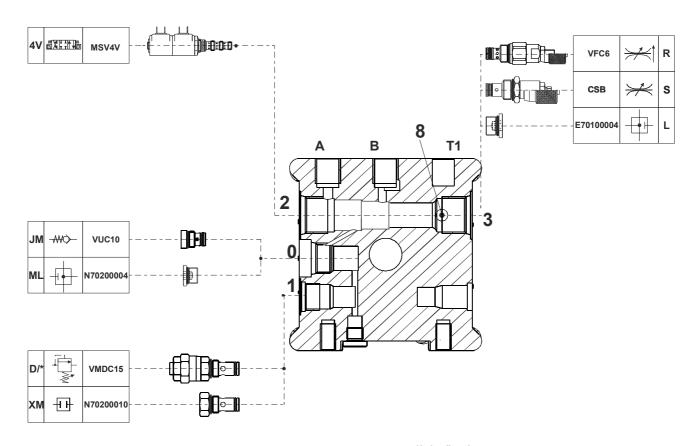
Yes. We can supply either fully assembled and tested power packs or kits of loose components, which can be kept in stock by our worldwide distributors and easily assembled to satisfy local market demand quickly and effectively. Central manifolds and other components are 100% tested even when supplied as loose parts.



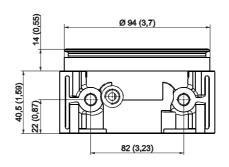

MICRO CENTRAL MANIFOLD «MB» EXECUTION VALVE COMBINATIONS

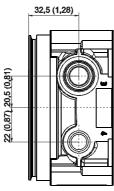


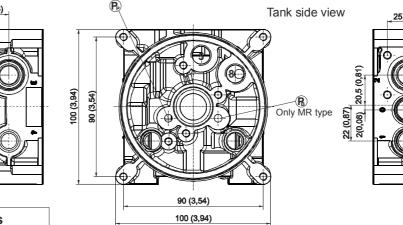

MICRO CENTRAL MANIFOLD «MR» EXECUTION VALVE COMBINATIONS



MICRO CENTRAL MANIFOLD «M4» EXECUTION VALVE COMBINATIONS

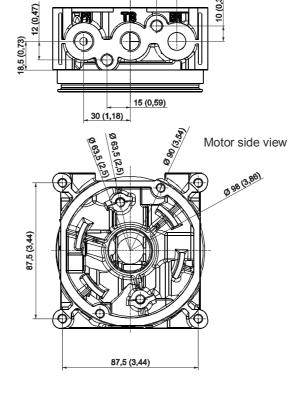



MICRO CENTRAL MANIFOLD OVERALL DIMENSIONS


Type	Spare part code
MB	E60102031
MR	E60102032
M4	E60102033
MBUS	E60102031US
MRUS	E60102032US
M4US	E60102033US

Weight: 0,60 kg (1,32 lb)

,25,5 (1)



30 (1,18)

17 (0,67)

Cavity	Threads
1, 4 (MR type)	M14x1 (relief valve)
0	5/8-18 UNF
2, 3	3/4-16 UNF (SAE 08) 5/8-18 UNF (MR type)
P-T, A-B, T1 (threaded on request only)	1/4" BSPP 9/16-18 UNF (US type)
5, 8	1/4" BSPP
External manifold attachment	2 pcs M8 tie-rods
Tanks attachment	4 pcs M5x10
Integral AC Motors attachment	4 pcs M6x20
DC Motors attachment	2 pcs M6x14 or M6 tie rods
Pump attachments	2 pcs M5 (see pump lenght on the relevant tables)
Foot mounting support attachments	2 pcs M8x16
PMC hand pump / CM lever valve cap attachments	4 pcs M5x45

SECTION C

PUMPS

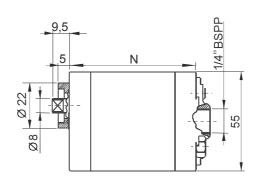
Group 0 with tang drive shaft and pressure balanced design for high volumetric efficiency, specifically designed for micro power packs.

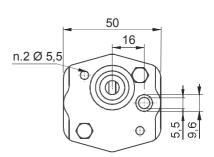
R series: bidirectional pumps with integrated suction check valves and two front outlet ports. They can be fitted on MR type central manifold.

Why are pressure balanced gear pumps better than fixed clearings gear pumps?

Pressure balanced gear pumps are built with lateral pressure plates which reduce the mechanical clearings on the gears with the increase of the pressure on the outlet, thus greatly improving the fluidodynamic efficiency, reducing heat generation and energy consumption. The mechanical efficiency is kept at optimal levels too.

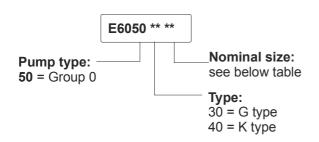
Why are the pump technical specifications showing three maximum pressure levels?


Our pumps have three ratings for the maximum allowable pressure: 1-Peak: is the maximum one and can be allowed for a maximum cycle of 2 seconds. 2-Intermittent: it can be applied on the pump for a maximum cycle of 20 seconds; 3-Continuous: it can be applied on the pump continuously.



SECTION C

STANDARD GEAR PUMPS. GROUP 0



Main features

 $\begin{array}{lll} \mbox{Oil temperature} & -15 \div +80 \ ^{\circ}\mbox{C} \\ \mbox{Inlet pressure} & 0,7 < P < 3,0 \mbox{ bar (absolute pressure)} \\ \mbox{Fixing bolts} & 2 \times M5 \mbox{ 8.8 class steel} \\ & & tightening torque: 5 \mbox{ Nm} \\ \mbox{Pressure definition} & \mbox{Peak pressure: cycle 2 s ON} \\ \mbox{Intermittent pressure: cycle 2 0 s ON} \\ \mbox{Continuous pressure: cycle always ON} \\ \mbox{Filtration setting} & 25 \div 50 \mbox{ μ} \\ \end{array}$

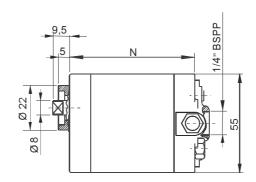
Standard rotation direction: clockwise rotation (from shaft side). Counterclockwise rotation pumps can be mounted on request. Ask our sales department.

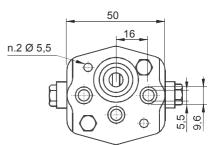
Spare part code

PPM assembly code field

Available range

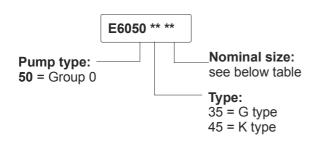
Nominal displacement (cc/rev)	Peak pressure (bar)	Intermittent pressure (bar)	Continuous pressure (bar)	Max speed (rpm)	N (mm)	Bolts* (mm)	Spare parts code	Weight (kg)
0,1	230	210	190	7000	45,5	M5x55	E60503001	0,31
0,2	200	180	160	6000	45,5	M5x55	E60504002	0,33
0,4	200	180	160	6000	47,5	M5x55	E60504004	0,35
0,6	200	180	160	6000	51,5	M5x60	E60504006	0,40
0,9	200	180	160	5000	52,5	M5x65	E60504009	0,44
1,3	200	180	160	3900	55,5	M5x65	E60504013	0,49
1,5	200	180	160	3900	57,8	M5x70	E60504015	0,51
1,9	150	130	110	3000			E60504017	0,55


^{*} A proper washer is to be forecast to adapt bolt lenght

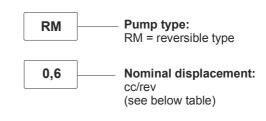


SECTION C

BIDIRECTIONAL GEAR PUMPS. GROUP 0


Main features

Oil temperature -15 ÷ +80 °C 0,7 < P < 3,0 bar (absolute pressure) Inlet pressure Fixing bolts 2 x M5 8.8 class steel tightening torque: 5 Nm Peak pressure: cycle 2 s ON Intermittent pressure: cycle 20 s ON Continuous pressure: cycle always ON Pressure definition


25 ÷ 50 µ Filtration setting

Standard rotation direction: clockwise rotation (from shaft side). Counterclockwise rotation pumps can be mounted on request. Ask our sales department.

Spare part code

PPM assembly code field

Available range

Nominal displacement (cc/rev)	Peak pressure (bar)	Intermittent pressure (bar)	Continuous pressure (bar)	Max speed (rpm)	N (mm)	Bolts* (mm)	Spare parts code	Weight (kg)
0,1	200	180	160	6000	45,5	M5x55	E60503501	0,44
0,2	200	180	160	6000	45,5	M5x55	E60504502	0,46
0,4	200	180	160	6000	47,5	M5x55	E60504504	0,48
0,6	200	180	160	6000	54,5	M5x65	E60504506	0,49
0,9	200	180	160	5000	62,4	M5x70	E60504509	0,50
1,3	200	180	160	3900	63,2	M5x70	E60504513	0,51
1,5	200	180	160	3900	64,5	M5x70	E60504515	0,52

^{*} A proper washer is to be forecast to adapt bolt lenght

INTEGRAL COMPONENTS

Two way no leakage solenoid valves SAE08 (3/4-16UNF) are available in Normally Closed, Normally Open, single and double locking executions. Manual override also available.

VSC flow control valves are pressure compensated to keep a stable lowering speed of single acting cylinders undependently of the load

The main relief valve is fitted in a M14 cavity and is designed to improve pressure setting stability and avoid the typical noise of lower cost alternative valves

The PMC02 cartridge hand pump SAE08 (3/4-16UNF), 2 cc/stroke is an affordable and easy way to add an emergency function to your power pack.

The main check valve fits in a 5/8-18UNF standard cavity and can be easily unmounted from the outside for easy cleaning and servicing

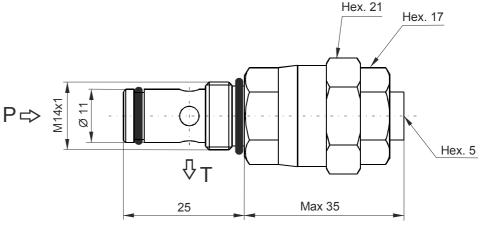
How does the coding of the power pack works?

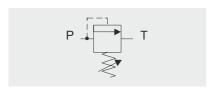
The power packs are coded with a speaking code, which is basically the list of subassemblies which make up the power pack (motor, pump, valves, tank,...). Integral components are those fitting inside central manifold cavities, which are numbered from 0 to 8. Each component has an assembly code, normally a single letter which compose the speaking code, and a spare part code in case they are ordered as loose components. The numbered cavities are indicated in the hydraulic scheme, so that it is easy to draw it starting from the speaking code itself, and on the central manifold casting too, to simplify assembling.

There are several different coils and connectors for the cartridge solenoid valves. How do I choose the proper ones?

Normally closed 2-way solenoid valves (MSV30*) use M130 series of coils either DC or directly AC. Normally open 2-way solenoid valves (MSV31E) can only use DC or RAC (rectified current) coils due tho their constructive principle. Both can use M140 series of coils for enhanced performances. When choosing a RAC coil, a rectifying bridge connector must be chosen (KA132R***).

MSV4V 4-way cartridge valves use M63 series coils. M630 are for DC supply, while M631 are rectified coils with integrated rectifying bridge. A standard KA13200000 connector must be always used with these coils.


Which are the most used plugs?


G or H plugs are normally fitted in cavity 2 of MB central manifold when this cavity is not used for functional valves. L type plug goes in cavity 3 of MB manifolds, when this cavity is not used. MR central manifold cavities 2 and 3 are machined according to 5/8-18UNF shape to allow the mounting of piloted operated check valves. MG plugs must be used there if P.O. check valves are not needed.

VMDC15 - DIRECT ACTING MAIN RELIEF VALVE

Main features

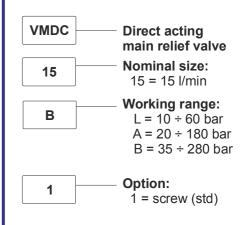
Max pressure	350 bar
Max flow	15 l/min
Weight	0,06 kg

Recommended tightening torque: 30 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$

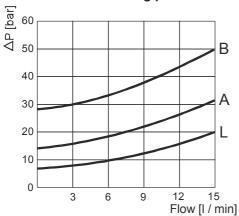
PPM assembly code field

DM/***

where *** stands for max setting pressure [bar]. Ex. D/280


where stands for option other than the standard one.

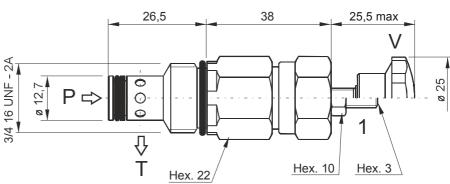
Mounting cavities

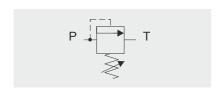

0	1		
2	3	4	
5		7	8

Note: cavity 4 only for MR type.

Spare part code

Minimum setting pressure




Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}$ C. Pressure drop may change depending on fluid viscosity and temperature

VMDC20 - DIRECT ACTING RELIEF VALVE

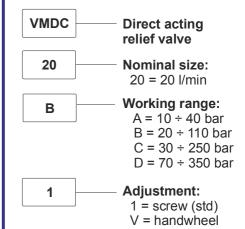
Main features

Max pressure	350 bar
Max flow	20 l/min
Weight	0,14 kg

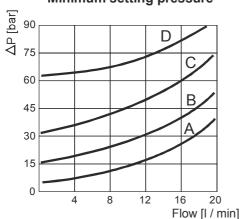
Recommended tightening torque: 40 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$

PPM assembly code field

V***

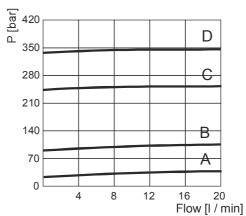

where *** stands for max setting pressure [bar]. Ex. V250

where stands for adjustment other than the standard one

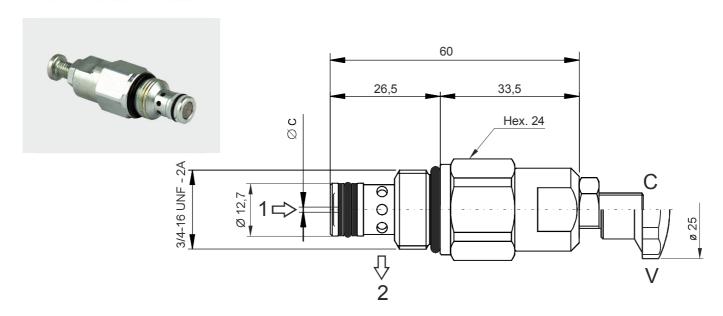

Mounting cavities

0	1		
2	3	4	
5		7	8

Spare part code



Minimum setting pressure


Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}$ C. Pressure drop may change depending on fluid viscosity and temperature

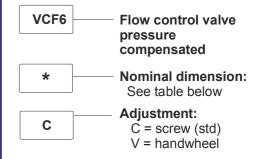
Pressure vs flow

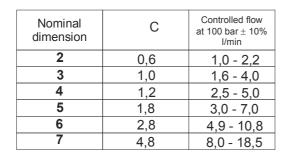
VCF6 - PRESSURE COMPENSATED FLOW CONTROL VALVE

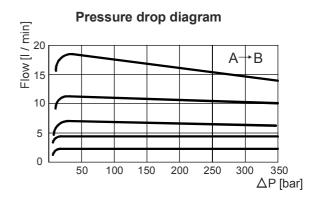
Main features

Max pressure	350 bar
Max flow	18 l/min
Weight	0,11 kg

Recommended tightening torque: 25 Nm Recommended filtration settings: 25 ÷ 50 μ Oil temperature: -30 ÷ + 80 °C

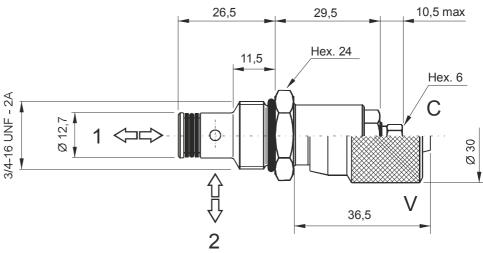

R *


where * stands for nominal dimension


Mounting cavities

0	1		
2	3	4	
5		7	8

Spare part code



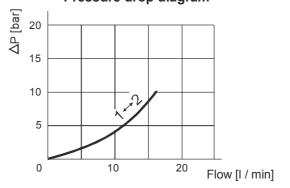
Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

CSB - BIDIRECTIONAL FLOW CONTROL VALVE

Main features

Max pressure300 barMax flow15 l/minWeight0,08 kg

Recommended tightening torque: 25 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$


Spare part code

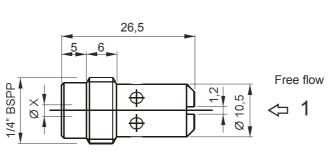
CSB Flow control valve

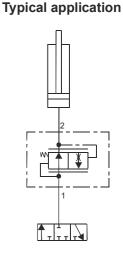
Nominal size:
04 = 3/4-16 UNF

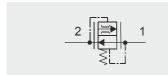
Adjustment:
C = screw (std)
V = handwheel

Pressure drop diagram

Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature




VSC01 - PRESSURE COMPENSATED FIXED FLOW CONTROL VALVE



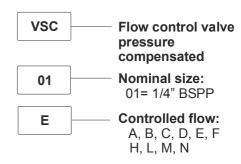
Controlled flow

2 ⇒

Main features

Max pressure	250 bar
Max flow	15 l/min
Weight	0,012 kg

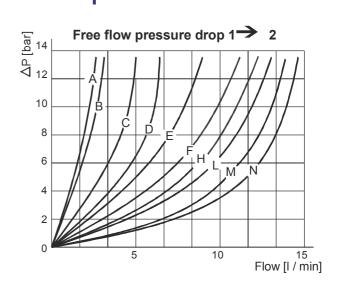
Recommended tightening torque: 6 Nm Recommended filtration settings: 25 ÷ 50 μ Oil temperature: -30 ÷ + 80 °C


PPM assembly code field

Nominal controlled flow [l/min]	(01)
Ex 5(01)	

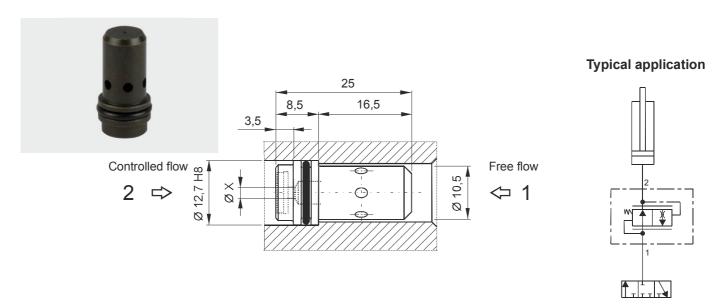
Mounting cavities

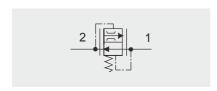
0	1		
2	3	4	
5		7	8


Spare part code

Controlled flow through X port 2 -> 1

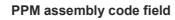
Spare part code	Ø X [mm]	Nominal controlled flow [I/min]
VSC01A	1	1
VSC01B	1,2	2
VSC01C	1,5	3
VSC01D	1,7	4
VSC01E	1,9	5
VSC01F	2,1	6
VSC01H	2,5	8
VSC01L	2,8	10
VSC01M	3	12
VSC01N	5	15


Note: nominal controlled flow, measured at 100 bar with an oil viscosity of 46 cSt at 40 $^{\circ}\text{C}$, are to be taken as general reference values and must be tested on the field.



Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 40 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

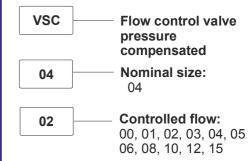
VSC04 - PRESSURE COMPENSATED FIXED FLOW CONTROL VALVE



Main features

Max pressure	250 bar
Max flow	15 l/min
Weight	0,012 kg

Recommended filtration settings: 25 ÷ 50 μ Oil temperature: -30 ÷ + 80 °C



Nominal controlled flow [I/min] (04)

Mounting cavities

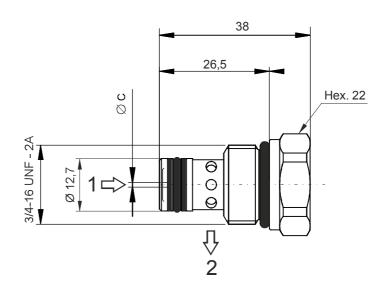
0	1		
2	3	4	
5		7	8


Spare part code

Controlled flow through X port $2 \rightarrow 1$

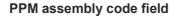
Spare part code	Ø X [mm]	Nominal controlled flow [l/min]
VSC0400	Closed	0
VSC0401	0,8	1
VSC0402	1	2
VSC0403	1,25	3
VSC0404	1,5	4
VSC0405	1,75	5
VSC0406	2	6
VSC0408	2,75	8
VSC0410	3,5	10
VSC0412	4	12
VSC0415	5	15

Note: nominal controlled flow, measured at 100 bar with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}$, are to be taken as general reference values and must be tested on the field



Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

VSC6 - PRESSURE COMPENSATED FIXED FLOW CONTROL VALVE

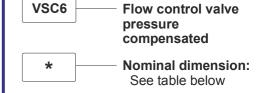

Main features

 Max pressure
 350 bar

 Max flow
 18 l/min

 Weight
 0,06 kg

Recommended tightening torque: 25 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$


F * where * stands for nominal

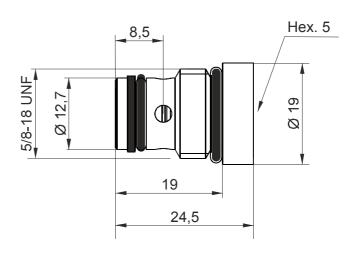
Mounting cavities

dimension

0	1		
2	3	4	
5		7	8

Spare part code

Nominal dimension	С	Controlled flow at 100 bar ± 10% l/min
02	0,8	1
03	1,0	2
04	1,25	3
05	1,5	4
06	1,75	6
07	2	8
09	2,5	11
11	3	14
13	3,5	16
15	4	20



Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 °C. Pressure drop may change depending on fluid viscosity and temperature

VUC10 - BASIC CHECK VALVE

This part is tipically used to connect a pressure gauge for statical pressure measurement. It is not suitable for istantaneous pressure measurement.

Main features

Max pressure350 barMax flow15 l/minWeight0,045 kgCracking pressure1 bar

Recommended tightening torque: 25 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$

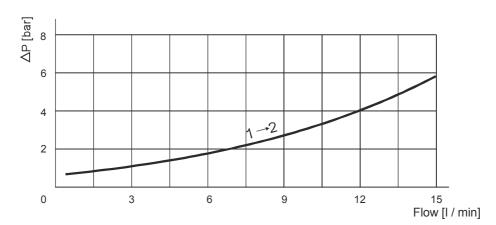
PPM assembly code field

JM (VUC10) JP (VUC10C)

Mounting cavities

0	1		
2	3	4	
5		7	8

Note: cavity 2 and 3 only for MR type.

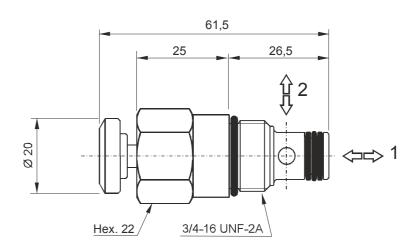

Spare part code

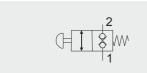
VUC Check valve

Nominal size:

- Options:
- = ball type
C = poppet type for pilot application

Pressure drop diagram




Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

CPE - MANUAL EMERGENCY VALVE

Main features

Max pressure300 barMax flow25 l/minWeight0,12 kg

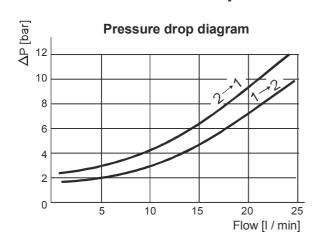
Recommended tightening torque: 25 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$

PPM assembly code field

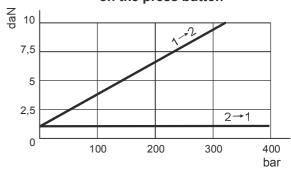
Z

Mounting cavities

0	1		
2	3	4	
5		7	8


Spare part code

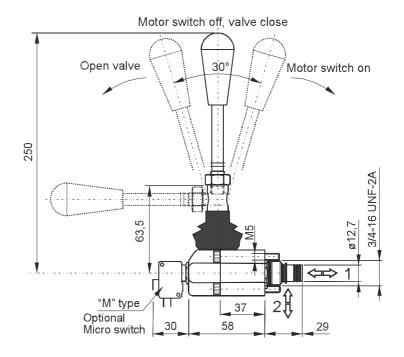
Two-way manual emergency valve

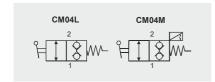

Nominal size:

P Operating device:
P = press button

04 = 3/4-16 UNF

Operating force (daN) on the press button



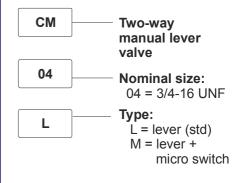

Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}$ C. Pressure drop may change depending on fluid viscosity and temperature

CM - MANUAL LEVER VALVE

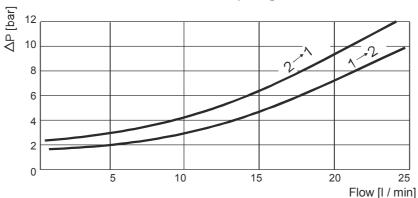
Main features

Max pressure	300 bar
Max flow	25 l/min
Weight	0,34 kg
Micro switch	10 A - 400 V
max current	16 A - 250 V

Fixing bolts: 4x M5x45 (tightening torque: 5 Nm) Recommended cartridge tightening torque: 20 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$

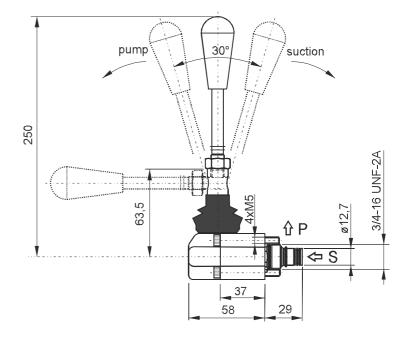

PPM assembly code field

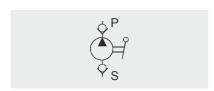
E (CM04L) **EM** (CM04M)


Mounting cavities

0	1		
2	3	4	
5		7	80

Spare part code


Pressure drop diagram



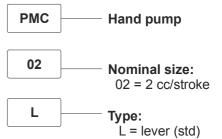
Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

PMC - CARTRIDGE HAND PUMP

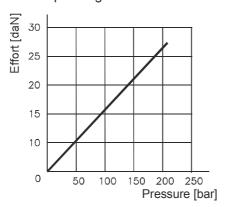
Main features

Max pressure	200 bar
Max flow	-
Weight	0,34 kg

Fixing bolts: 4x M5x45 (tightening torque: 5 Nm) Recommended cartridge tightening torque: 15 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$


PPM assembly code field

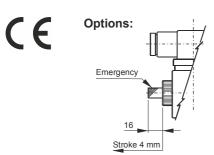
U

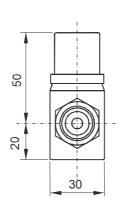

Mounting cavities

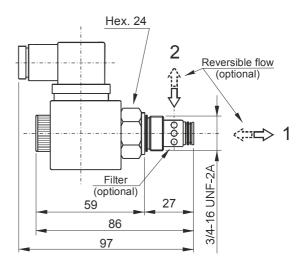
0	1		
2	3	4	
5		7	8

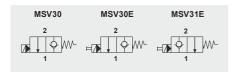
Spare part code

Effort (daN) operating on the lever end




Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

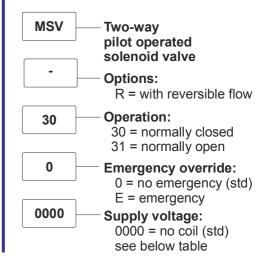



MSV - PILOT OPERATED TWO-WAY SINGLE LOCKING SOLENOID VALVE

Main features

210 bar (up to 300bar*) Max pressure 25 l/min Max flow Weight 0,27 Kg (with coil) Coil thermal insulation Class F (Class H*) Electric connection DIN 43650-A / ISO 4400 IP 65 / DIN 40050 Coil protection degree ED 75% (ED 100%*) **Duty cycle** +/- 10% nominal voltage Voltage required EN50081-1/EN50082-2 (89/336 CEE electromagnetic comp.) 73/23/CEE / 96/68/CEE (low voltage) **Normatives**

PPM assembly code field

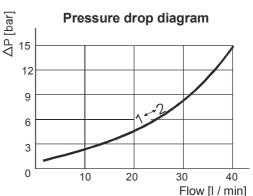

A (MSV30) Voltage B (MSV30E) Voltage C (MSV31E) Voltage

Ex: A12DC

Mounting cavities

0	1		
2	3	4	
5		7	8

Spare part code



Coils section

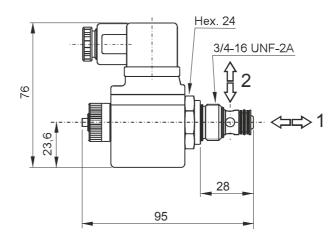
Supply voltage (V)	Coil type	Spare coil code	Spare connector code	Holding power consumption
12DC	12DC	M13040001	KA132000B1	18W
24DC	24DC	M13040002	KA132000B1	18W
24AC/ ^{50 Hz} _{60 Hz}	24DC	M13040002	KA132R11B1	18W
115AC/ ^{50 Hz} 60 Hz	110RC	M13040004	KA132R12B1	18W
230AC/ _{60 Hz}	220RC	M13040005	KA132R13B1	18W
115AC/50Hz	115/50AC	M13040006	KA132000B1	28VA
230AC/50Hz	230/50AC	M13040007	KA132000B1	28VA

^{*}Only for MSV30*NC valves.

Other voltages and electric connectors types (Amp Juior, flying leads,...) are available on request. Inrush power consumption can be up to 3,5 times higher than the holding one.

Recommended tightening torque: 45 Nm Recommended filtration settings: 25 ÷ 50 μ Oil temperature: -30 ÷ + 80 °C

Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 °C. Pressure drop may change depending on fluid viscosity and temperature


^{*:} with M140 series coils only. See table U040.20.12 coils section. The max flow/max pressure cannot be achieved at the same time.

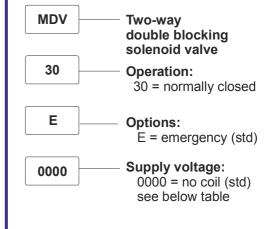


MDV - DIRECT OPERATED TWO-WAY DOUBLE BLOCKING SOLENOID VALVE

Main features

Max pressure 210 bar 15 l/min Max flow Weight 0,34 Kg (with coil) Coil thermal insulation Class H Electric connection DIN 43650-A / ISO 4400 Coil protection degree IP 65 / DIN 40050 ED 75% (ED 100%*) **Duty cycle** +/- 10% nominal voltage Voltage required EN50081-1/EN50082-2 (89/336 CEE electromagnetic comp.) 73/23/CEE / 96/68/CEE (low voltage) Normatives

PPM assembly code field


D Voltage

Ex: D24DC

Mounting cavities

0	1		
2	3	4	
5		7	8

Spare part code

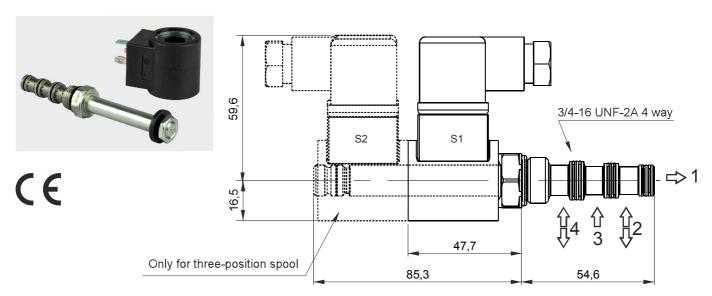
Coils section

Supply voltage (V)	Coil type	Spare coil code	Spare connector code	Holding power consumption
12DC	12DC	M14040001	KA132000B1	22W
24DC	24DC	M14040002	KA132000B1	22W
24AC/ ^{50 Hz} _{60 Hz}	24DC	M14040002	KA132R11B1	22W
115AC/ _{60 Hz}		M14040004	KA132R12B1	22W
230AC/ _{60 Hz}	220RC	M14040005	KA132R13B1	22W

Other voltages and electric connectors types (Amp Junior, flying leads,...) available on request.

Inrush power consumption can be up to 3,5 times higher than the holding one.

Pressure drop diagram


Recommended tightening torque:45 Nm Recommended filtration settings: 25 \div 50 μ Oil temperature: -30 \div + 80 $^{\circ}C$

Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 °C. Pressure drop may change depending on fluid viscosity and temperature

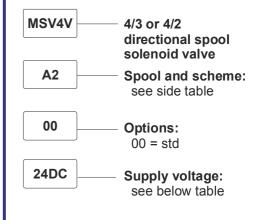
^{*:} with M140 series coils only. See table U040.20.12 coils section. The max flow/max pressure cannot be achieved at the same time.

MSV4V - DIRECT OPERATED 4/3 OR 4/2 DIRECTIONAL SPOOL SOLENOID VALVE

Main features

Max pressure 210 bar Max flow 12 l/min 0,37 Kg (1 solenoid) 0,64 Kg (2 solenoid) Weight Coil thermal insulation Electric connection DIN 43650-A / ISO 4400 IP 65 / DIN 40050 Coil protection degree **Duty cycle** ED 100% +/- 10% nominal voltage Voltage required Recommended 30 Nm tightening torque Oil temperature

PPM assembly code field

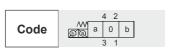

4VA2 Voltage Ex: 4VA2 24DC

Mounting cavities

0)	1		
2		3	4	
5			7	8

Note: MSV4V can be mounted on central manifold type M4 only.

Spare part code


Coils section

-25 ÷ +70°C

Supply voltage (V)	Coil voltage	Spare coil code	Spare connector code	Holding power consumption
12DC	12DC	M6306012	KA132000B1	22W
24DC	24DC	M6306024	KA132000B1	22W
24AC/ 50 Hz 60 Hz	24AC	M6316024	KA132000B1	22W
115AC/ 50 Hz 60 Hz	115AC	M6316115	KA132000B1	22W
230AC/ ^{50 Hz} _{60 Hz}	230AC	M6316230	KA132000B1	22W

Other voltages and electric connectors types (Amp Junior, flying leads,...) available on

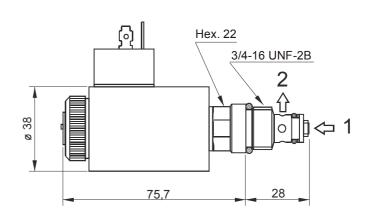
Inrush power consumption can be up to 3,5 times higher than the holding one.

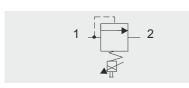
Double solenoid

A2*		
B2		
C2		
E2		

Single solenoid

omigio conomora		
A11C		


^{* =} spools with price additional Other spools are avaiable on request



VMPC2 - PROPORTIONAL RELIEF VALVE

Main features

Max pressure 350 bar Max flow 2 I/min Weight 0,46 Kg (with coil) Coil thermal insulation Class H Electric connection DIN 43650-A / ISO 4400 Coil protection degree IP 65 / DIN 40050 **PWM** 120 Hz Hysteresis 5% **Duty cycle** FD 100% Voltage required +/- 10% nominal voltage EN50081-1/EN50082-2 (89/336 CEE electromagnetic comp.) 73/23/CEE / 96/68/CEE (low voltage) **Normatives**

Recommended tightening torque: 30 Nm Recommended filtration settings: 10 \div 25 μ Oil temperature: -40 \div + 80 $^{\circ}C$

Note: Supplying current to the coil from 0 to I max (see below diagram), a proportional pressure variation is obtained on port P.

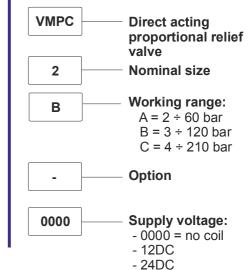
For the controller see page U040.20.16

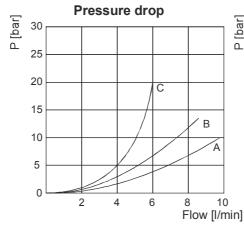
Coils section

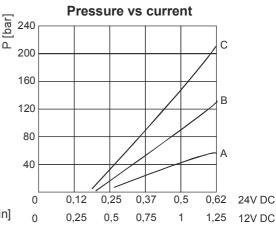
Supply voltage	Spare coil code	Spare connector code
12DC	M6306012	KA132000B1
24DC	M6306024	KA132000B1

Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

PPM assembly code field

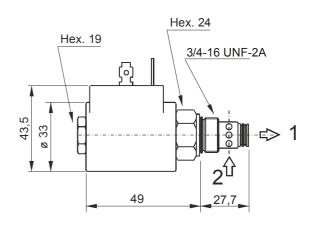

P*** Voltage


where *** stands for max setting pressure [bar]. Ex. P25012DC


Mounting cavities

0	1		
2	3	4	
5		7	8

Spare part code


Current [A]

CSPC15 - PROPORTIONAL FLOW CONTROL VALVE

Main features

Max pressure 315 bar Max flow 15 l/min Weight 0,25 Kg (with coil) Coil thermal insulation Class H Electric connection DIN 43650-A / ISO 4400 Coil protection degree IP 65 / DIN 40050 **PWM** 120 Hz Hysteresis 5% **Duty cycle** ED 100% Voltage required +/- 10% nominal voltage EN50081-1/EN50082-2 (89/336 CEE electromagnetic comp.) 73/23/CEE / 96/68/CEE (low voltage) **Normatives**

Recommended tightening torque: 30 Nm Recommended filtration settings: 10 \div 25 μ Oil temperature: -10 \div + 80 $^{\circ}C$

Note: Supplying current to the coil from 0 to I max (see below diagram), a proportional pressure variation is obtained on port P.

For the controller see page U040.20.16

Coils section

Supply voltage	Spare coil code	Spare connector code
12DC	M6306012	KA132000B1
24DC	M6306024	KA132000B1

Note: Values measured on valve alone (no cavity) with an oil viscosity of 46 cSt at 50 $^{\circ}\text{C}.$ Pressure drop may change depending on fluid viscosity and temperature

PPM assembly code field

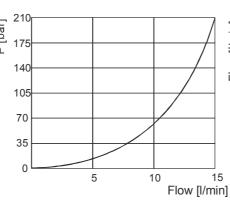
T Voltage

Ex: T12DC

Mounting cavities

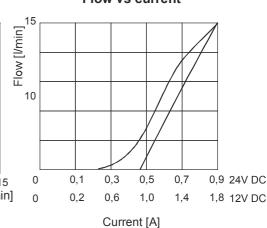
0	1		
2	3	4	
5		7	8

Spare part code


CSPC Proportional flow control valve

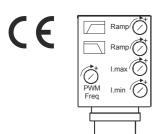
15 Nominal size:
15 = 15 l/min

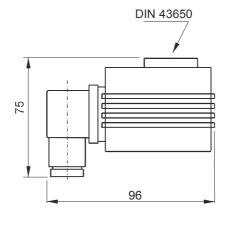
Option:
0 = no options

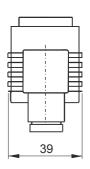

Supply voltage:
- 0000 = no coil
- 12DC

Pressure vs flow

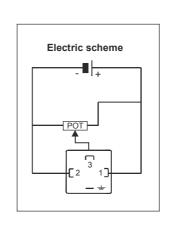
Flow vs current

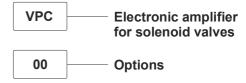

- 24DC





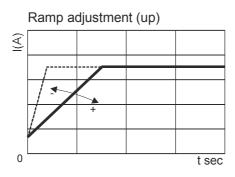
VPC - ELECTRONIC AMPLIFIER FOR PROPORTIONAL SOLENOID VALVES

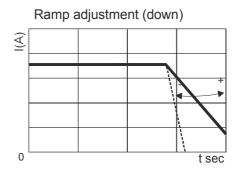



Weight: 0,11 Kg

Main features

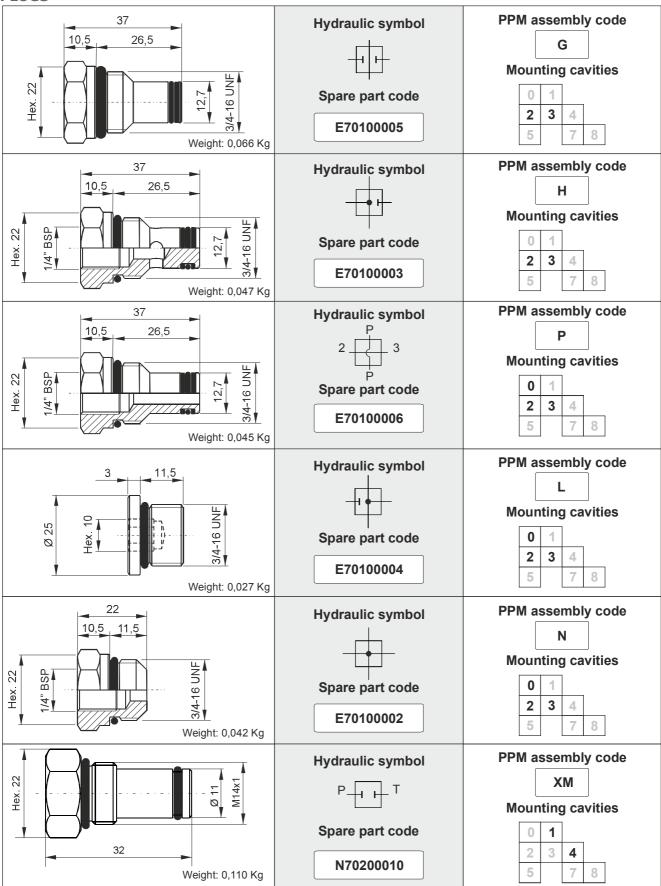
Supply voltage	12 / 24VDC
Voltage input signal	0 - 10 V
range	
Input impedance	100 kohm
Max current range	2,5A
Electric connection	DIN 43650-A / ISO 4400
Ramp adjustment (indipendent)	0 ÷ 3 s
PWM	120 Hz
(optionally adjustable)	(50 ÷ 400 Hz)
Working temperature	-10 ÷ +50 °C
Normatives	EN50081-1/EN50082-2 (89/336 CEE electromagnetic comp.) 73/23/CEE / 96/68/CEE (low voltage)

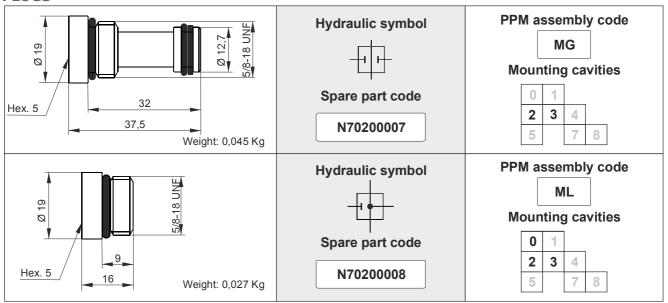

Spare part code



- Suitable for:
 CSPC15**** (see table U040.20.15.00)
 VMPC2**** (see table U040.20.14.00)

Instruction for use:


- 1) turn completely "I MIN" trimmer in counterclockwise direction;
- 2) adjust the external voltage input signal to the initial regulating (flow or pressure) value;
- 3) turn "I MIN" trimmer in clockwise direction until valve starts regulating;
- 4) adjust the external voltage input signal to the max value and adjust "I MAX" trimmer until the valve regulates the maximum flow or pressure on the hydraulic system.



PLUGS

PLUGS

Note: cavities 2 and 3 are machined SAE08 (3/4-16UNF) in central manifold MB and 5/8-18UNF in central manifold MR. Cavity 2 is machined SAE08-4way in central manifold M4.

TANKS

Better plastic or steel tanks?

Plastic tanks have several advatanges. Among them: they do not get rust, the oil level is visible, they do not damage if getting bumped,... On the other hand steel tanks are to be preferred in case of ultra high or ultra low temperatures.

Is it possible to realize custom made tanks?

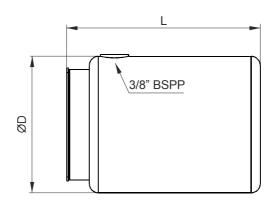
Yes. We can provide an adaptor flange (F80000012) which can welded on custom made tanks, at customer care.

How do I order spare tanks?

Tanks can be ordered without accessories just by adding a J in front of the relevant code (es. JE50404006). When ordered with the normal code (e.g. E50404006) they include all relevant accessories such as: plugs, filler breather, fixing devices,... depending on the kind of tank. Tanks specified in PPM speaking code always include all relevant accessories.

ROUND STEEL TANKS F & H SERIES

Recommended tightening torque for 3/8" BSPP: 10 Nm



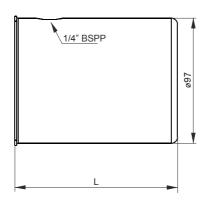
Description	PPC assembly	Spare part code	L (mm)	ØD (mm)	Weight		filling ne (lt)
	code		, ,	, ,		Horizontal	Vertical
0,7 I cylindrical horizontal / vertical mounting	0,7F / 0,7FV	E50403001	120	97	0,26	0,75	0,52
1,2 I cylindrical horizontal / vertical mounting	1,2F / 1,2FV	E50403002	175	97	0,38	1,1	0,9

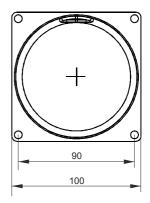
All measures are indicative in mm

Recommended tightening torque for 3/8" BSPP: 10 Nm

Description	PPC assembly code (L (mm)	ØD (mm)	Weight		l filling ne (It)
	code		, ,	, ,		Horizontal	Vertical
1,7 I cylindrical horizontal / vertical mounting	1,7H / 1,7HV	E50404004	170	120	0,64	1,5	1,2
2,4 I cylindrical horizontal / vertical mounting	2,4H / 2,4HV	E50404006	170	150	0,8	2,4	1,8

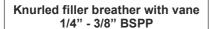
All measures are indicative in mm

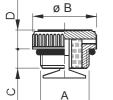

Material	Fe P04-EN10130 steel sheet 1,5mm thickness			
Fluid	Mineral based oil ISO/DIN 6743/4			
Working temperature -15 / +70°C				


Note: the piping kit, standard suction filter, filler/breather and discharge plug are included when specifying the tank in PPM assembly code. When ordering spare parts, only the discharge plug and filler/breather are included. If you wish to order only the barebone tanks just add a J in front of the relevant code. Ex. JE50403002 instead of E50403002.

ROUND PLASTIC TANKS R SERIES

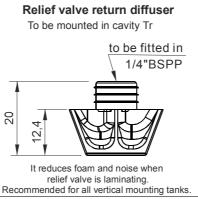
Description	PPC assembly	ssembly Spare part		Weight	Actual filling volume (It)	
	code				Horizontal	Vertical
0,4 I round horizontal / vertical mounting	0,4R / 0,4RV	H50403001	90	0,07 Kg	0,45	0,35
0,7 I round horizontal / vertical mounting	0,7R / 0,7RV	H50403002	124	0,09 Kg	0,75	0,62
1,2 I round horizontal / vertical mounting	1,2R / 1,2RV	H50403003	186	0,14 Kg	1,17	1,05

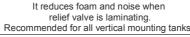

Material	PE-HD neutral / transparent color (DO NOT EXPOSE TO DIRECT SUNLIGHT)			
Fluid	Mineral based oil ISO/DIN 6743/4			
Working temperature	-15 / +70°C			


Notes: the piping kit, standard suction strainer and filler/breather are included when specifying the tank in PPM assembly code. When ordering spare tanks, filler/breather and clamp band are included. If you wish to order only the barebone tanks just add a J in front of the relevant code.

Ex. JH50403002 instead of H50403002.

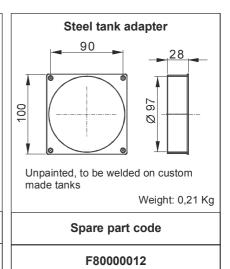
TANKS PLUGS AND ACCESSORIES

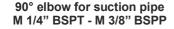


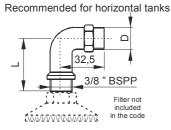

		1/4"	3/8"
	Α	1/4"	3/8"
Ø	В	20	
	С	7,5	
	D	9,5	

Suitable for R type tanks (1/4" BSPP) Suitable for F/H type tanks (3/8" BSPP)

Spare part code

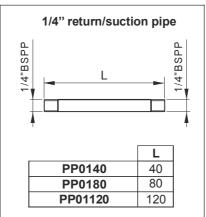

C75100001 (1/4" BSPP) C75100002 (3/8" BSPP)





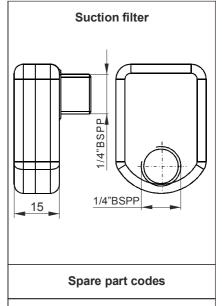
Spare part code

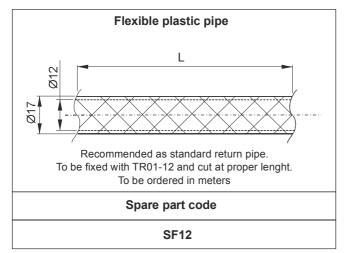
SFEP01D

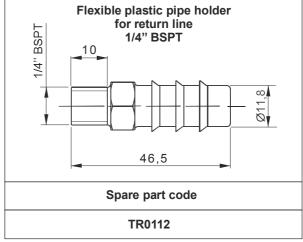


	L	D
PP01E40	40	1/4"BSPT
PP01E77	77	1/4"BSPT

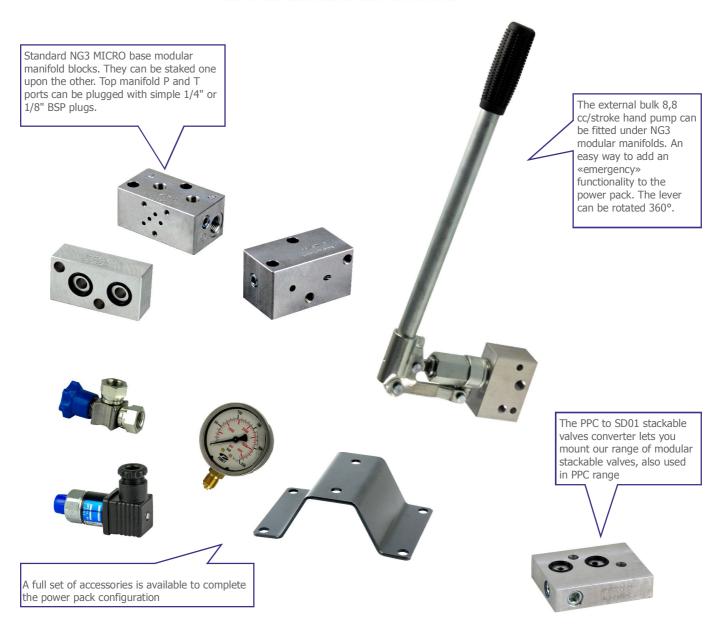
Spare part code


PP0*E**


Recommended as suction pipe for PMC02 hand pumps and as return pipe with C3420001 return filter.


Spare part codes

PP01**


C34100100

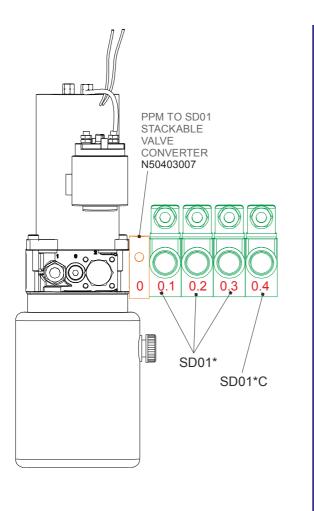
EXTERNAL MANIFOLDS & ACCESSORIES

Which types of external manifold blocks can be mounted?

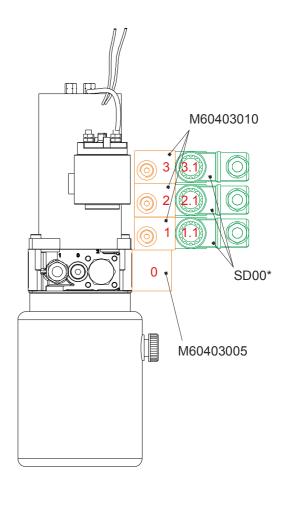
The central manifold exit face allows the mounting of manifold blocks fixed by $2x\ M8$ bolts.

The first choice of external blocks is the NG3 MICRO system. Lateral exit ports modular base manifolds, spacer and 90° adaptor are available to modify dimensions and mounting positions for high flexibility.

To mount stackable directional valves the relevant adaptor plate PPM to SD01 (N50403007) is required. See section G technical tables for the relevant valves details.


When do I need to mount the spacer block?

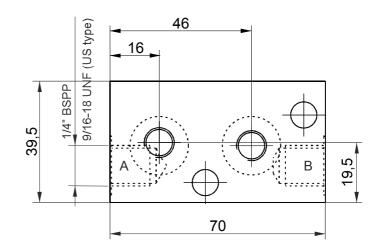
Whenever a big motor is mounted on the power pack, to avoid interference between the motor and external blocks and valves. Normally M60403004 spacer must be mounted below the stack of NG3 MICRO manifolds whenever using any AC motor and with DC motors with frame 114.

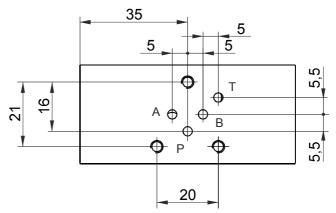


EXTERNAL MANIFOLDS & VALVES MOUNTING EXAMPLES

PPM + SD01 STACKABLE VALVES

PPM + NG3 MICRO BLOCKS & VALVES




The micro powerpacks external manifolds and valves are arranged following a stack levels logic. Each stack is numbered as n, n.1, n.2, n.3,... where n is the basic manifold stack number, n.1 is the first valve mounted on top of manifold n, n.2 is the second one, mounted on top of n.1 one,...

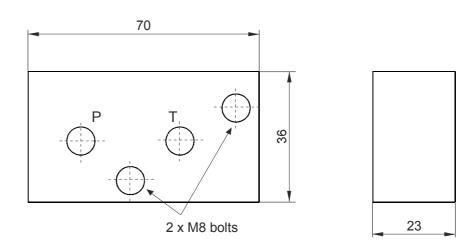
See above self-explanatory drawings where manifolds are coloured in orange and valves in green. Stack levels are numbered in red.

NG3 MICRO MODULAR MANIFOLDS. LATERAL PORTS

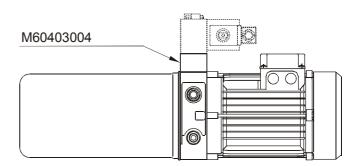
Weight: 0,21 kg Fixing system: 2 x M8 tie-rods steel class 8.8 or above

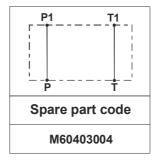
Parallel connection	Spare part code
Lateral ports	M60403010
Lateral ports US execution	M60403010US

Note: to add external manifolds to PPM assembly code, just add their spare part codes at the end of PPM code. Ex: PPM-0,8 12DC-MB-J-K0,6-D/280-G-1,5L+**M60403004+M60403010**


The NG3 micro valve attachment is on motor side.

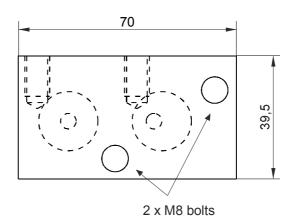
Recommended tightening torque for M8 bolts: 16 Nm

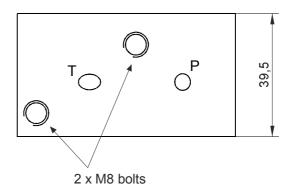

SPACER ELEMENT

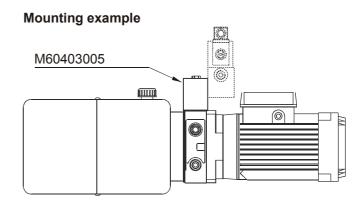


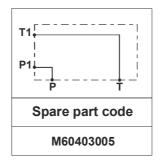
Weight: 0,14 kg Fixing system: 2 x M8 tie-rods steel class 8.8 or above

Mounting example

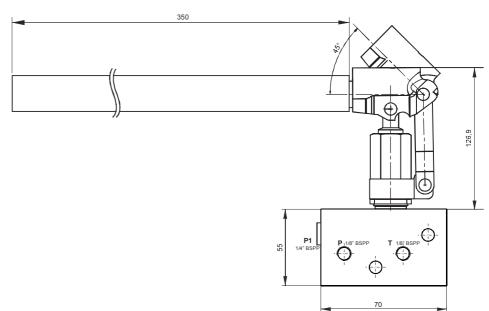





90° ROTATION MANIFOLD

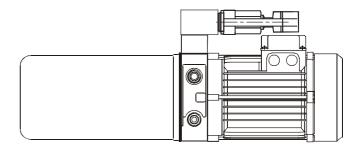


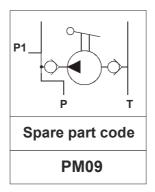
Weight: 0,26 kg Fixing system: 2 x M8 tie-rods steel class 8.8 or above



PM09 HAND PUMP MODULAR MANIFOLD

Fixing system: 2 x M8 tie-rods Material class: min. 8.8 or equivalent

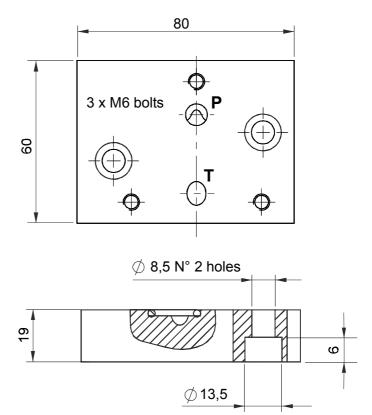

Block height: 39mm Weight: 1,8 kg

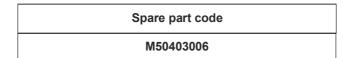


Main features

Max pressure210 barDisplacement8,8 cc/strokeFixing bolts $2 \times M8 (8.8 \text{ class steel})$ Filtration grade $25 \div 50 \mu$ Temperature range $-20 \div +70 ^{\circ}\text{C}$

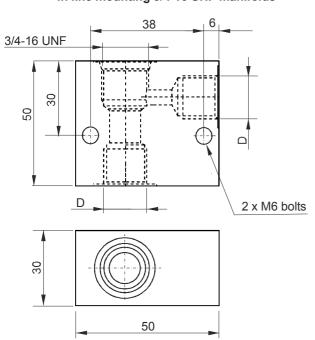
Mounting example


Recommended tightening torque for M8 bolts: 16 Nm.


Commissioning: the pump must be bled by opening the plug of the unused pressure port (P o P1), pumping a few times until oil comes out, then tightening the plug again.

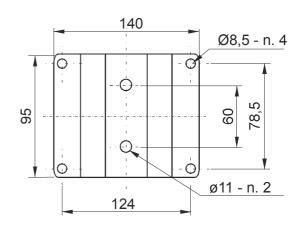
PPM TO SD01 STACKABLE VALVE CONVERTER

Fixing system: 2 x M8x20 steel class 8.8 or above Weight: 0,22 Kg $\,$



ACCESSORIES

In line mounting 3/4-16 UNF manifolds

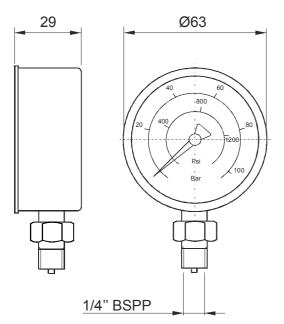


	D	Weight
BFCSAE0802	3/8" BSPP	0,16 Kg
BFCSAE0801	1/4" BSPP	0,48 Kg

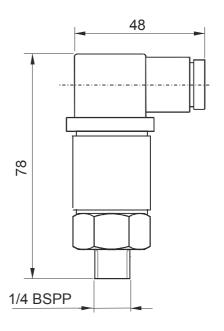
Spare pa	art codes
BFCSAE0802	BFCSAE0801

Foot mounting support

Spare part code		
E60543003		


ACCESSORIES

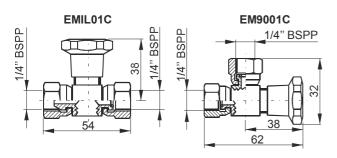
Pressure gauge


Protection degree	IP 65
Thermal drift	±0,04%/1K from 20°C
Weight	0,206 Kg
Static working pressure	75% end of scale
Peak working pressure	end of scale
Working temperature	-10 ÷ +60°C
Precision class	cl. 1.6 EN837-1

Spare part code	
MIR63***	***:pressure max in bar (60, 100, 160, 250, 315 bar)

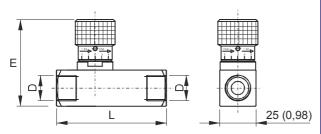
Pressure switch

Protection degree	IP 65	
Hysteresis	15 ÷ 25%	
Weight	0,05 Kg	
Max load	0,5A @ 250VAC	
Working temperature	-25 ÷ +85°C	
Switching accuracy ±4% end of scale @ 20		
Electric switch	NO / NC	



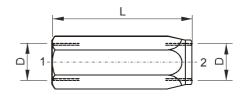
Spare part code	
F401***	***:pressure max in bar (050, 100, 200, 400 bar)

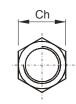
Gauge isolator F-F



Weight: 0,14 Kg. Max working pressure: bar

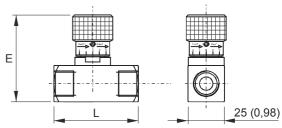
Spare part code
EM9001C / EMIL01C


In-line unidirectional flow control valve



Spare part code	D	E	L	Weight
STU01	1/4" BSPP	68	66	0,34 kg
STUSAE06	9/16-18UNF	68 (2,68)	70,5 (2,78)	0,38 kg (0,84 lb)

In-line check valve



Spare part code	D	Ch	L	Weight
VUR01	1/4" BSPP	19	55	0,10 kg
VURSAE06	9/16-18UNF	19 (0,75)	58 (2,28)	0,10 kg (0,22 lb)

In-line bidirectional flow control valve

Spare part code	D	E	L	Weight
STB01	1/4" BSPP	68	54	0,29 kg
STBSAE06	9/16-18UNF	68 (2,68)	54 (2,13)	0,30 kg (0,66 lb)

SECTION G

EXTERNAL VALVES

NG3 MICRO valves are the standard extracompact spool valve solution for PPM micro power packs. Each valve requires a base NG3 MICRO modular manifold.

Bancable valves: the «new» solution to reduce power pack dimensions and weight. A and B threaded ports are machined directly on the valve body

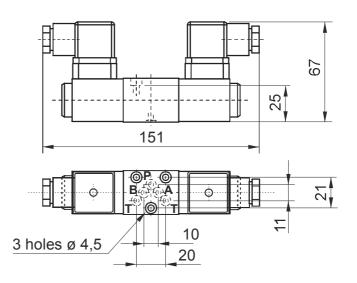
Why aren't NG6 (cetop 3) valves available)?

The micro power pack range has been designed for ultra light, high power density, extra small enhanced applications, all in one package. NG6 (cetop 3) valves have been designed for flows which are currently more then 10 times that of the micro power units and, notwithstanding their enormous diffusion worldwide, they are superceded today by smaller factor, high power, energy saving spool valves, like our stackable valves or NG3 MICRO series which offer best dimension/performance ratio.

Is it possible to manufacture special manifold blocks with special valves combinations for specific applications? Yes. Whenever quantities justify the investment in design and manufacturing. Ask our sales department first.

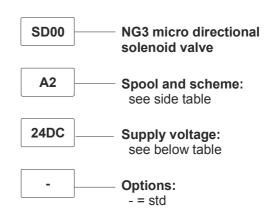
Which coils and connectors do I select for the spool valves?

NG3 MICRO valves SD00* series are planned to be driven by DC coils only. Stackable valves SD01* series use DC or RAC M120 series coils. When choosing a RAC coil, a rectifying bridge connector must be chosen (KA132 \mathbf{R}^{***}). A standard KA13200000 connector must be always used with DC coils.

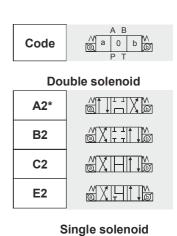

SECTION G

NG3 MICRO DIRECTIONAL SOLENOID VALVES

Weight: 0,7 kg (2 sol), 0,55 kg (1 sol)



Main features


315 bar
100 bar
15 l/min
3 TCEI M4x30. 2,8Nm torque 10.9 class steel or better
Class H
DIN 43650-A / ISO 4400
IP 65 / DIN 40050
ED 100%
+/- 10% nominal voltage
included as standard
EN50081-1 / EN50082-2 (89/336 CEE electromagnetic comp.) 73/23/CEE / 96/68/CEE (low voltage)

Spare part code

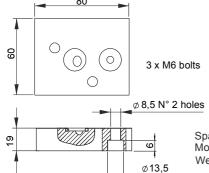
Supply voltage (V)	Coil voltage	Spare coil code	Spare connector code	Holding power consumption
12DC	12DC	M10040001	KA132000B1	16W
24DC	24DC	M10040002	KA132000B1	16W
24AC/ _{60 Hz}	24DC	M10040002	KA132R11B1	16W

Other voltages and electric connectors types (Amp Junior, flying leads,...) available on request. Inrush power consumption can be up to 3,5 times higher than the holding one.

A11C

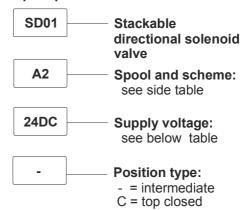
^{* =} spools with price addition. Other spools are available on request

SECTION G


STACKABLE DIRECTIONAL SOLENOID VALVES

175 61 5,5 56 1/4" BSPP 0 0 Ø13,5

Mounting manifold


Spare part code: N50403007 Mounting bolts 2 x M8x20 Weight: 0,22 Kg

Weight: 0,89 Kg (1 sol.) 1,09 Kg (2 sol.) Fixing system: 3xM6 tie-rods

Main features

Max pressure	250 bar
Max p on T port	210 bar static, 140 bar dynamic
Max flow	20 l/min
Fixing bolts	3 TCEI M6 x 6Nm torque. 10.9 class steel
Coil insulation	Class H
Electric connection	DIN 43650-A / ISO 4400
Protection class	IP 65 / DIN 40050
Duty cycle	ED 100%
Voltage required	+/- 10% nominal voltage
Manual override	included as standard
Normatives	EN50081-1 / EN50082-2 (89/336 CEE electromagnetic comp.) 73/23/CEE / 96/68/CEE (low voltage)

Spare part code

Supply voltage (V)	Coil voltage	Spare coil code	Spare connector code	Holding power consumption
12DC	12DC	M12040001	KA132000B1	22W
24DC	24DC	M12040002	KA132000B1	22W
24AC/ _{60 Hz}	24DC	M12040002	KA132R11B1	22W
230AC/ ⁵⁰ Hz 60 Hz	220RC	M12040005	KA132R13B1	22W

Other voltages and electric connectors types (Amp Junior, flying leads,...) available

Inrush power consumption can be up to 3,5 times higher than the holding one.

Code	A B Walob W PT
Dou	uble solenoid
A2*	
B2	
C2	

Single solenoid

	-						
A11C		<u>a</u>		T.	1.	M	

E2

^{* =} spools with price additional. Other spools available on request